
 N
news

april 2011  |   vol.  54  |   no.  4  |   communications of the acm     13

I
l

l
u

s
t

r
a

t
i

o
n

 b
y

 w
e

k
n

o
w

/s
h

u
t

t
e

r
s

t
o

c
k

G
enerating random num-

bers might seem pretty 
simple. After all, so many 
things in our everyday 
lives occur without pat-

tern or repetition—coin tosses, for 
example, or the distribution of rain-
drops on your car windshield. In any 
case, the whole notion of striving for 
randomness might seem a bit alien to 
a computer scientist, who is trained 
to make processes predictable and 
repeatable.

Cryptographers use random num-
ber generators (RNGs) to produce un-
predictable keys for coded messages, 
digital signatures, challenge-response 
systems, and other technologies at the 
heart of information security. And re-
searchers in fields such as biology, eco-
nomics, and physics use them to simu-
late the real world via Monte Carlo 
models. Human life and great sums of 
money may depend on the robustness 
of these systems, yet it is often difficult 
to prove that they work correctly—and 
will continue to do so.

Part of the problem is one of defini-
tion. One might say, for example, that 
a random bit generator (as RNGs are 
often called) must over time produce 
half 0s and half 1s, or that it must gen-

erate the sequence “00” one-quarter of 
the time. But, points out Silvio Micali, 
a computer scientist and cryptography 
expert at Massachusetts Institute of 
Technology (MIT), the sequence 0, 1, 
2, ... 9 (written in binary) would pass 
those tests but would hardly be consid-
ered “random.”

Definitions matter, Micali says. “If 
you define [randomness] correctly, 
then you can get it. But if you are vague 
or unclear, you can’t possibly get it.” 
In 1984, Micali and Manuel Blum, a 
professor of computer science at Carn-
egie Mellon University, published an 
influential paper, “How to Generate 

Science  |  doi:10.1145/1924421.1924427	 Gary Anthes

The Quest for 
Randomness 
It’s not easy to generate a string of numbers that lack any pattern  
or rule, or even to define exactly what randomness means.



14    communications of the acm    |   april 2011  |   vol.  54  |   no.  4

news

ware, which produces pseudorandom 
numbers, has led researchers to look 
for ways to produce “true” random-
ness, and that always involves hard-
ware or a physical process not gov-
erned by rules. Indeed, the Russian 
mathematician Andrei Kolmogorov 
defined randomness in a way that rules 
out software as a way to produce it. Ac-

cording to Kolmogorov, a string of bits 
is truly random if the shortest descrip-
tion of the string is as long as the string 
itself. Researchers have based nonde-
terministic RNGs on disk head seek 
times, thermal noise, atomic scale 
quantum effects, and other phenom-
ena that are statistically shown to be 
fundamentally random.

Theoretically perfect hardware ap-
proaches can suffer from efficiency 
problems, says MIT’s Micali. For ex-
ample, one can imagine looking at the 
Brownian movement of a particle sus-
pended in a liquid and counting it as 
a 0 if it is on the left and a 1 if it is on 
the right. “To get the first bit is easy,” 
he says, “but to get 1,000 is a little bit 
hard.” A cryptography system in bank-
ing or national security might need to 
generate millions of random bits per 
second.

A Matter of Timing 
A more subtle problem is one of tim-
ing. Suppose one samples the ran-
domly fluctuating noise from a diode 
and records a 1 if it is below a certain 
threshold and a 0 above. If you sample 
too often, you are likely to get biased 
strings like 000011110000 because the 
noise level doesn’t change fast enough. 
For this and a variety of other reasons, 
hardware sources are not immune to 
biases that affect the randomness of 
their output. 

But now Intel Corp. claims to have 
found a way around the drawbacks 
of nondeterministic, hardware-based 
RNGs. It recently announced that it 
had created a working prototype of a 
digital circuit, which could be resident 
within the central processing unit, that 
harvests randomness, or “entropy,” 
from thermal noise in the chip. “Ours 
is the first truly, fully digital RNG,” 
claims Ram Krishnamurthy, a senior 
principal engineer at Intel’s Circuits 
Research Lab.

He says conceptually similar devic-
es, known as true random number gen-
erators, have been built from analog 
circuits that are subject to disruption 
from the process and noise variations 
in the central processing unit, so they 
have to be isolated off-chip and con-
nected by a bus that is vulnerable to 
snooping. They also employ large ca-
pacitors that make manufacturing and 
scaling difficult, Krishnamurthy says.

Cryptographically Strong Sequences of 
Pseudorandom Bits,” that laid out just 
such a definitional framework (see the 
“Pseudorandomness, and How to Get 
It” sidebar above).

Another difficulty lies in testing a 
RNG. Traditionally, a test checks to 
see if the system in question reliably 
produces output known in advance 
to be correct, but when is a stream of 
random bits correct? The U.S. National 
Institute of Standards and Technology 
(NIST) has developed “known-answer 
tests” for software-based, or determin-
istic, RNGs, because any given algo-
rithm is expected to produce the same 
answer every time, given the same in-
put. But convincing tests of the output 
of nondeterministic RNGs, such as a 
noise source in hardware, are not so 
easy to construct.    

A third problem, related to testing, 
is that some RNGs initially work cor-
rectly but gradually and silently fail 
over time, introducing biases that cor-
rupt randomness.

The deterministic nature of soft-

A cryptography 
system in finance 
or national security 
might need  
to generate millions 
of random bits  
per second.

“You can’t start with a blank sheet of paper and generate 100 million random 
numbers,” says Silvio Micali, a computer scientist at Massachusetts Institute of 
Technology. “That is very hard.”

Instead, he says, one should begin with a relatively small list—say, 100 bits—that 
are truly random, most likely generated by some physical process such as quantum 
mechanics. He goes on to define pseudorandom number generators as software that 
“expands” the randomness in this initial small list, or seed.  

“Now I want to generate 100 million random bits of very high quality,” he says. 
“But how do I define ‘high quality’?” He and Manuel Blum, a professor of computer 
science at Carnegie Mellon University, proposed a definition in which anyone 
shown the first n bits generated, but not the seed, could not guess what the next bit 
would be substantially more than 50% of the time. “Substantially more” might be 
defined as 51%, 50.1%, 50.01%, or some other threshold, depending on one’s security 
requirements.

The Micali-Blum definition also includes the notion of computational resources. 
“If all the computers in the world must work for one million years to guess the next 
bit, then it is high quality,” says Micali, who believes the ideal seed contains 300 bits. 
Guessing the 300-bit seed that generated any given sequence by trial-and-error would 
mean testing more possibilities than there are elementary particles in the universe.

Given the seed list of truly random bits, Micali and Blum prescribed the use of 
one-way functions to produce the desired sequence of random bits. In cryptography, 
a one-way function is easy to compute in one direction—for example, determining 
the product of two large prime numbers—but computationally very difficult to 
reverse—factoring that product back into the two primes. That is the method used in 
public-key cryptography, for example.

Similarly, the Blum-Micali generator of pseudorandom bits employs the 
asymmetry between computing discrete logarithms, which is difficult, and the 
inverse, discrete exponentiation, which is easy.

Micali refuses to comment on any of the existing ways that so-called “true” 
random numbers are generated. “I prefer to be agnostic about seed generation,” he 
says, “because I find it conceptually difficult to convince myself of their randomness.”

—Gary Anthes

Pseudorandomness,  
and How to Get It



april 2011  |   vol.  54  |   no.  4  |   communications of the acm     15

news

Society

Predictive Modeling as Preventive Medicine 
If an ounce of prevention is 
worth a pound of cure, then 
how much prevention would it 
take to put a dent in the U.S.’s 
projected $2.8 trillion annual 
health-care tab? 

How about $3 million 
worth? That’s the amount the 
Heritage Provider Network is 
offering as prize money in a new 
contest for developers to create 
algorithms aimed at identifying 
those patients most likely to 
require hospitalization in the 
coming year. (Contest details 
are available at http://www.
heritagehealthprize.com/.)

Previous studies have 
suggested that early treatment 
of at-risk patients can 
dramatically reduce health care 
expenditures. For example, a 
well-regarded study in Camden, 
NJ, demonstrated that hospitals 
could slash costs by more than 
50% for their most frequently 
hospitalized patients by 
targeting them with proactive 
health care before they incurred 
expensive trips to the emergency 
room. 

In hopes of replicating 
those savings on a larger scale, 
the contest organizers will 

furnish developers with a set of 
anonymized medical records 
for 100,000 patients from 2008. 
Using this data set, developers 
will try to develop a predictive 
algorithm to pinpoint those 
patients most likely to have been 
hospitalized the following year. 

For example, an effective 
algorithm might identify 
patients who have already been 
diagnosed with diabetes, high 
cholesterol, hypertension, and 
premature menopause—and 
correctly predict the 90% 
likelihood that such a patient 
would wind up in the hospital 

within the year.
“The Heritage Health Prize is 

a high profile way to harness the 
power of predictive modeling 
and using it solves one of 
America’s biggest challenges,” 
says Jeremy Howard, chief 
data scientist for Kaggle, the 
company managing the contest.

If successful, this effort 
could yield a powerful 
computational tool to help rein 
in spiraling health-care costs, 
potentially saving billions 
of dollars—or at least a few 
pounds’ worth of cure.

—Alex Wright

sources,” she says. “We are kind of 
feeling our way along. How do you 
do general testing for technology 
when you don’t know what will come 
along? We are not really sure how 
good these tests are.”

Entropy sources may not produce 
output that is 100% random, and dif-
ferent test samples from a single 
source may have different degrees of 
randomness. “We want to know how 
much entropy is in 100 bits—100, 50, 
or two?” Barker says. “And does it con-
tinue that way?”

Indeed, generating random num-
bers today clearly lags what is theoreti-
cally possible, Micali says. “We are still 
in the mode of using library functions 
and strange things that nobody can 
prove anything about,” he says.	

Intel’s circuit is implemented in 
a 45nm complementary metal ox-
ide semiconductor and can generate 
2.4 billion truly random bits per sec-
ond—200 times faster than the best 
available analog equivalent—while 
drawing just 7 milliwatts of power, 
according to Krishnamurthy. And the 
technology is highly scalable, he says, 
so that multiple copies of the digital 
circuit could be coupled in parallel ar-
rays. The technology could be scaled 
up in this way to directly provide the 
random numbers needed by large 
systems, or it could be scaled down to 
low voltages so as to just provide high-
entropy seeds for a software-based 
RNG, Krishnamurthy says. In the latter 
mode, it would operate at 10 megabits 
per second and draw just 10 micro-
watts of power.

Krishnamurthy acknowledges that 
the circuit’s output is subject to pro-
cess fluctuations—caused by  transis-
tor, power supply, and temperature 
variations—that could introduce bias 
in its output. But Intel has developed 
a self-calibrating feedback loop that 
compensates for those variations. The 
resulting design operates at a level of 
entropy of 99.9965% and has passed 
the NIST tests for randomness, Krish-
namurthy says.

But more work on these tests is 
needed, says Elaine Barker, a math-
ematician in NIST’s Computer Se-
curity Division. “The thing we have 
been really struggling with is how to 
test the entropy sources, the noise 

Further Reading

Barker, E. and Kelsey, J. 
Recommendation for random number 
generation using deterministic random 
bit generators (revised), NIST Special 
Publication 800-90, U.S. National 
Institute of Standards and Technology, 
March 2007.

Blum, M. and Micali, S. 
How to generate cryptographically  
strong sequences of pseudorandom 
bits, SIAM Journal on Computing 13, 4, 
November 1984. 

Menezes, A., van Oorschot, P., and 
Vanstone, S. 
Pseudorandom bits and sequences, 
Handbook of Applied Cryptography, CRC 
Press, Boca Raton, FL, 1996.

Rukhin, A, Soto, J., Nechvatal, J., Smid, M., 
Barker, E., Leigh, S., Levenson, M., Vangel, M., 
Banks, D., Heckert, A., Dray, J., and Vo, S. 
A statistical test suite for random and 
pseudorandom number generators 
for cryptographic applications, NIST 
Special Publication 800-22, U.S. National 
Institute of Standards and Technology, 
April 2010.

Srinivasan, S., Mathew, S., Ramanarayanan, R., 
Sheikh, F., Anders, M., Kaul, H., Erraguntla, V., 
Krishnamurthy, R., and Taylor, G. 
2.4GHz 7mW all-digital PVT-variation 
tolerant true random number generator  
in 45nm CMOS, 2010 IEEE Symposium  
on VLSI Circuits, Honolulu, HI,  
June 16–18, 2010.

Gary Anthes is a technology writer and editor based in 
Arlington, VA.

© 2011 ACM 0001-0782/11/04 $10.00 

Some random 
number generators 
initially work 
correctly but silently 
fail over time,  
introducing biases 
that corrupt 
randomness.




