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A vibrant community has developed at the triple point where mathematics meets 
physics and materials science. The very successful Third SIAM Conference on 
Mathematical Aspects of Materials Science provides a convenient snapshot of its 
scope (Philadelphia, May 2000, [http://www.siam.org/meetings/ms00]) .  

The boundary between mathematics and materials science is fuzzy, and should 
remain so. Yet mathematicians have a special role to play, in part because they 
tend to use different tools and focus on different questions than their materials 
science colleagues. Their goals naturally include modeling phenomena at the edge 
of current capabilities or understanding, and developing new tools that advance 
the scientific frontier. But their goals also include clarifying conclusions through 
rigorous analysis, and taking advantage of common themes in apparently distinct 
disciplines. One such theme is the linking of models on different length scales: this 
grand challenge of materials science has much in common with numerical analysis 
(especially domain decomposition and adaptive mesh refinement) and 
homogenization (which provides macroscopic constitutive laws for materials with 
microstructure).  

Here is a highly selective survey of past accomplishments, present directions, and 
future promise in eight areas.  

1. EFFECTIVE MODULI OF COMPOSITES 

The analysis of composite materials has a long history. Traditionally, most 
attention has focused on composites with known or measured microstructure--
developing methods for estimating macroscopic behavior such as the effective 
dielectric constant or Hooke's law. Recently some investigators have addressed 
what amounts to the opposite problem--finding microstructures with extremal 
effective behavior, and more generally exploring the range of possible effective 
behaviors as the microstructure varies. This effort has been remarkably 
successful, leading to homogenization-based numerical algorithms for optimal 
design and an impressive array of explicit examples [1,2]. In the process, new 
methods have been developed for establishing geometry-independent bounds on 
effective moduli, and for constructing composites with extremal behavior.  

The present understanding of bounds and optimal microstructures is most 
complete for two-component linear composites. Similar progress in other settings--
multicomponent composites, polycrystals, and nonlinear material response--will 
require new ideas. But perhaps the proper immediate goal is less directed: we 
should seek a deeper understanding of links to the multidimensional calculus of 
variations. The analysis of effective moduli and coherent phase transformation is 
driving this field in much the same way that analysis of soap films and minimal 
surfaces drove development of geometric measure theory a generation ago. One 
tantalizing development is the recent use of results about quasiconformal 
mappings to prove new bounds on effective conductivity [3,4].  

2. MARTENSITIC PHASE 
TRANSFORMATION 

The mechanical response of a shape-memory material is highly nonlinear, giving 
rise to a wide range of applications including actuators, eyeglass frames, dental 
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wire, and medical devices. The special properties of these materials are 
attributable to their crystalline structure, and in particular to a martensitic phase 
transformation. The nonlinearity of their response is due to stress-induced 
changes in microstructure. We need better models for such materials, both to 
predict and control their behavior and to facilitate the design of new materials.  

Recent mathematical work has greatly improved our understanding. A major 
breakthrough was the realization that the phenomenological "crystallographic 
theory of martensite" can be deduced from elastic energy minimization [5]. This 
has led to fresh understanding of various material systems, and quite recently to 
the design of new thin-film devices and magnetostrictive materials [6,7].  

Most manufacturable shape-memory materials are polycrystals rather than single 
crystals. This raises both analysis and design questions: given a material with 
known polycrystalline texture, can we model its overall response? And are there 
special polycrystalline textures with unusually good response? Methods from 
polycrystal plasticity are relevant, through an analogy between slip systems and 
twinning systems. However the situation is rather different--shape memory 
materials have relatively few twinning systems while most metals have many slip 
systems--so the two subjects are by no means equivalent [8]. One current activity 
is the development of a novel scheme for simulating random polycrystals [9].  

The link between shape memory behavior and elastic energy minimization has 
driven, over the past ten years, a very productive re-examination of nonconvex 
problems in the multidimensional calculus of variations. One striking 
accomplishment was V. Sverak's demonstration that rank-one convexity is 
different from quasiconvexity [10].  

3. AVERAGING, HOMOGENIZATION, AND 
MEAN FIELD THEORIES 

We often wish to describe the essential character of a heterogeneous system. This 
is commonly done using approximate, ad-hoc, or formal arguments, leaving some 
doubt about the correctness of the model. Mathematical analysis is valuable for its 
ability to set the record straight, sometimes leading to unexpected conclusions.  

Ostwald ripening provides a convenient example. This surface-energy-driven, 
volume-preserving evolution of inclusions in a matrix arises in the modeling of 
phase separation. Forty years ago Lifshitz, Slyozov, and Wagner analyzed the 
case of well-separated, low-volume-fraction inclusions, deriving an evolution 
equation for the radius distribution function then finding a similarity solution 
representing its asymptotic large-time dynamics. Their analysis was widely 
accepted, however recent work has shown that it is incomplete. In fact the LSW 
similarity solution is not the only stable one; other asymptotic regimes are possible 
as well, depending on the details of the initial distribution [11].  

An open problem involving averaging is the analysis of length scale effects in 
plasticity. It has long been known that the hardness of a ductile polycrystal 
increases as the grain size decreases. The standard explanation involves 
dislocation pileup at grain boundaries; this may well be right, but we lack 
understanding of its macroscopic consequences. Recently phenomenological 
"strain gradient" theories have been proposed and calibrated against various 
experiments [12]. There remains, however, no derivation of strain-gradient theory 
from a finer-scale model of mechanical behavior.  

A somewhat different question is the analysis of random composites. Attention has 
traditionally focused on macroscopic effective behavior, and on bounding or 
estimating this behavior using statistical measurements such as two- or three-point 
correlation functions [13]. In an unexpected convergence of interests, the image 
processing community has also been studying random patterns--known to them as 
textures [14]. But specialists in vision rarely use real-space representations of 
images; they prefer multiscale or wavelet representations. Might wavelet 
representation also be useful for analyzing the properties of a composite--for 
example for predicting the statistics of local fields, given a finite-sizes sample of 
the microstructure?  

4. DEFECTS AND SINGULARLY 
PERTURBED VARIATIONAL PROBLEMS 

Many physical systems have Landau theories, which amount to nonconvex 
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variational problems regularized by higher-order singular perturbations. 
Micromagnetics provides an example: there the higher-order term is exchange 
energy. The analysis of shape memory via elastic energy minimization provides 
another example: there the singular perturbation is surface energy. The mechanics 
of thin sheets provides a third example, with bending energy as the singular 
perturbation.  

The metastable states associated with such singularly perturbed energies typically 
have defects. Magnetic domain walls and elastic twin boundaries are familiar 
examples. Since these problems have a small parameter, it is natural to do an 
asymptotic analysis as that parameter tends to zero [15]. There are in fact two 
distinct tasks, which should be separated: understanding the internal structure of 
defects, and understanding their spatial distribution. The theory known as Gamma-
convergence provides a convenient framework and a powerful set of analogies. 
The physically relevant examples usually lie beyond the power of the existing 
theory, however, so examples based on Landau theories are helping drive the 
subject. Recent studies in this area have addressed, among other topics (a) soft 
magnetic thin films [16] and (b) delamination and blistering of compressed thin 
films [17].  

5. INTERFACE MOTION 

Interface motion laws are central to materials science--and to other areas including 
differential geometry and image processing. The past ten years' progress in this 
area has been quite striking.  

On the numerical side, a family of "level-set" methods has been developed for 
tracking the motion of oriented curves in the plane or surfaces in R3 [18]. The 
great advantage of these methods is their seamless handling of topological 
change. The earliest implementations were for local laws of motion, however the 
current technology also handles nonlocal laws such as those that arise in 
deposition processes (where shadowing is important), solidification (where 
interface motion is coupled to a bulk diffusion), and fluid dynamics (where the 
interface is a free boundary) [21].  

On the analytical side, a viscosity-solution-based theory of existence and 
uniqueness [19,20] has clarified the handling of topological transitions such as 
pinch-off. It is natural to wonder whether the continuation of the solution is uniquely 
determined after pinch-off, or whether additional constitutive information might be 
required at the singular time. The PDE theory shows, in a certain precise sense, 
that the evolution after pinch-off is usually determined without any need for further 
information--but it also gives examples where this is not the case [22].  

Much remains to be done. The level set and viscosity methods are mainly 
restricted to two-phase problems and oriented interfaces; the simulation and 
analysis of multiphase problems is very different and far less well understood. 
Even in the two-phase setting, our understanding of the analysis lags far behind 
the numerics. For example, the current generation of level-set-based numerics 
seems to handle topological transitions for fourth-order problems like "motion by 
surface diffusion", however there is as yet no corresponding theory of weak 
solutions.  

6. EPITAXIAL GROWTH 

Epitaxial growth is the process by which a crystalline film is formed. The 
fundamental mechanisms were explored by Burton, Cabrera, and Frank almost 
fifty years ago. However the system-specific details and the mesoscopic 
consequences of these mechanisms are still poorly understood.  

Below the roughening temperature the crystal surface consists of steps and 
terraces. Atoms land on terraces, diffuse to steps, then get incorporated into the 
crystal. The attachment of atoms at steps accounts only for horizontal growth; 
vertical growth requires creation of new steps, for example through nucleation of 
islands or through the presence of screw dislocations. As details vary--for example 
attachment and detachment laws, anisotropy, and misfit--these elements combine 
in various ways to determine the crystalline structure, defects, and roughness of a 
growing film [23].  

Epitaxial growth can be modeled in different ways: molecular dynamics tracks the 
positions of atoms; kinetic Monte Carlo tracks transitions between specific 
configurations; step flow laws track the positions of steps; and surface evolution 
laws track the continuum-scale surface as the solution of a partial differential 
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equation. All these approaches are valuable; they describe different length and 
time scales. Molecular dynamics, the smallest-scale tool, is used to determine the 
statistics of configurational transitions. Monte Carlo is still essentially an atomic 
scale technique; since little averaging is done within the model, the 
correspondence between parameters and morphology must be explored through 
simulation--a laborious procedure due to the very small length scale and time step. 
Step flow laws do some local averaging, by solving a diffusion equation instead of 
a random walk on each terrace, and by representing step positions as smooth 
curves. This is useful, for example, for understanding instabilities and step 
bunching. Surface evolution laws do much more averaging--though the precise 
amount is often unclear, since those models are usually obtained 
phenomenologically rather than by averaging a finer-scale theory.  

The tasks of simulating these models efficiently, using them effectively, and linking 
them with one another are among the grand challenges of materials science. One 
recent development is a continuum approach to island growth. It tracks the terrace 
adatom density and the evolving island geometry by deterministic partial 
differential equations (using the level-set method, which handles topological 
transitions easily). Atomic-scale stochasticity is kept only where it matters--in the 
nucleation of new islands. Numerical experiments have shown that this method, 
properly calibrated, can reproduce the results of kinetic Monte Carlo simulation 
[24].  

7. MICROMAGNETICS 

Magnetic storage devices lie at the foundation of modern computing. Their 
modeling, simulation, analysis, and design raise fundamental questions of physics 
and mathematics, many still unanswered. Technology is changing the research 
frontier: as device sizes decrease, issues that seemed academic a few years ago--
such as the effects of thermal noise and spatial disorder--are acquiring practical 
importance.  

A distinguishing feature of this topic is the existence of a well-established and 
benchmarked mathematical model: micromagnetics [25]. This theory, now over 
fifty years old, describes metastable magnetization patterns as local minima of a 
suitable energy (composed of "exchange," "anisotropy," and "magnetostatic" 
terms). Moreover it prescribes the evolution of magnetization via the Landau-
Lifshitz-Gilbert equation. Micromagnetics has relatively few constitutive 
parameters, yet (like fluid dynamics) its solutions can have complex behavior on 
multiple length scales.  

One important direction for mathematical work is numerical micromagnetics. 
Numerical simulation is widely used already, but existing methods are only 
adequate for studying extremely small devices. There are basically three 
difficulties: (a) magnetic domain walls are thin, requiring a small spatial grid for 
resolution; (b) the evolution equations are stiff, requiring a small time step for 
stability; and (c) the magnetostatic interactions are long-range, requiring evaluation 
of a convolution at each time step. The usual way of handling (c) is to use a fast 
Fourier transform--which however requires a uniform spatial grid. This wastes 
spatial degrees of freedom on large regions where nothing interesting is 
happening. Adaptive mesh refinement is a natural alternative, coupled with a 
version of the fast multipole method [27] for evaluating magnetostatic interactions. 
Another natural direction is the development of implicit time-stepping schemes, to 
permit simulation with much larger time steps [26].  

A different direction is the role of noise in magnetic switching. The switching of a 
uniformly-magnetized particle has been considered at great length. However the 
systems of real interest are not uniformly magnetized: the configuration space is 
truly infinite-dimensional (magnetization fields) rather than finite-dimensional 
(constant magnetization), and switching involves nucleation and motion of domain 
walls. Even without noise, the present understanding of switching in the spatially-
distributed setting is very incomplete. As for the role of noise: this is a question of 
large deviations, for a system described by stochastic PDE's rather than stochastic 
ODE's. The relevant theory is in its infancy [29]; our current understanding is 
based mainly on numerical and physical experiments [28].  

8. ALGORITHM DEVELOPMENT 

Numerical simulation plays a major role in modern materials science. The 
increasing power of computation is only partly due to the development of bigger 
and faster computers. It is also due to the development of better algorithms, 
maximizing the impact of computational resources. A familiar example is the fast 
Fourier transform, which is routinely used in micromagnetics and many other areas 
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of condensed matter physics.  

A recent development of comparable importance is the invention of fast multipole 
methods for evaluating long-range interactions of irregularly-placed sources. 
Problems of this type arise, for example, in analyzing scattering from rough 
surfaces, in predicting the performance of complex circuit boards, and in 
evaluating the magnetostatic interactions of irregularly-spaced dipoles. Before fast 
multipole methods, such computations on a system with N sources took order N2 
steps. The new algorithms reduce this to order N (or sometimes N log N) steps. 
Thus, a simulation previously limited to 104 sources can now be done with 108, 
giving access to whole new range of spatial and temporal scales.  

Fast Fourier transform, fast multipole method--what's the next element in this 
sequence? That's hard to say, but a new scheme for accelerating molecular 
dynamics could be a serious contender. The importance is clear: molecular 
dynamics is in many settings the most fundamental model available, being based 
directly on a description of atomic interactions. However molecular dynamics is 
currently limited to extremely small time intervals, because the fast vibration times 
of an atomic scale model require extremely small time steps for accurate 
integration. This is a serious problem, since our main interest is in transitions 
between distinct configurations, which may have long waiting times. Recently 
Voter introduced a method called "hyperdynamics," which changes the underlying 
potential to make transitions more frequent, then corrects for errors associated 
with modification of the potential [30]. This method is generating great excitement 
in the materials science community. It seems a natural object for mathematical 
analysis, to reveal its power and limitations, and perhaps to make improvements.  
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