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Number Theory and its 
Connections to Geometry 
and Analysis 

B. MAZUR 

The impetus to unify theories has been with us since, at least, the days of 
Empedocles and Anaxagoras. Much mathematics and physics has been inspired 
by the drive to unify language, methods, and results. This is indeed famously so in 
physics where the challenge is to produce a truly unified single theory which 
accounts for all known interactions. The aim of the Erlangen program at the end of 
the nineteenth century was to unify geometry and algebra (specifically: group 
theory). The aim of the Langlands program in the latter part of the twentieth is to 
unify algebraic number theory and analysis (specifically: representation theory).  

The proof of Fermat's Last Theorem (Wiles, Taylor-Wiles) involves, and perhaps 
requires, a viewpoint that brings together complex analysis, automorphic forms, 
group representation theory, cohomological techniques whose origin was in 
topology, ideas from algebraic geometry and commutative algebra, and (of course) 
a great amount of number theory. The advances stemming from the study of the 
Seiberg-Witten equations, or of mirror symmetry, occupy an intellectual space that 
is a meeting-ground for algebraic geometry, symplectic geometry, differential 
geometry, and the powerful unifying intuitions imported from physics.  

"Unification of the educational cultures" is often a consequence of unified theories. 
And this tends to mean that the younger generation of scientists, brought up in 
with a broader education in their subject—with a broader sense of what their 
subject consists of—will have richer scientific goals.  

One element of the special richness that number theory, in particular, enjoys at 
present is that its current open problems stretch from string-theoretic issues to the 
most basic questions regarding the placement of the prime numbers within the 
natural numbers; from algebraic geometry, to sphere-packing, to coding and 
cryptography. Questions that have immediate applications (e.g., how safe is my 
Internet communication from prying eyes, or prying computers?) are inseparable 
from fundamental problems in number theory (e.g., find an efficient algorithm to 
factor integers). The most theoretical aspects of the subject intertwine with the 
most experimental aspects, and many fundamental "phenomenological" 
experiments in number theory have direct consequences in the "real" world and 
the "virtual" world (e.g., putting computer algorithms to rigorous test).  

A concrete example?  

I will describe, in relatively nontechnical language, one example of a piece of 
mathematics that unites number-theory, number-experiment, and algorithm-
experiment. I am referring to a recent preprint of Noam Elkies, "Rational points 
near curves and small nonzero |x3-y2| via lattice reduction." Elkies' article is, in my 
opinion, a model for the kind of "full union" these aspects of the subject 
(theory/experiment/algorithm) will surely enjoy in the future. There are important 
directions in number theory that would be well served by such a union.  

Algebra tends to deal in equalities, in exact equations. Number theory often does. 
For example, in the Fermat problem, one asks for triples of perfect nth powers an, 
bn, cn where the last perfect nth power is exactly the sum of the first two, not just 
approximately so. You are not interested in "near-misses."  

Or are you? It may come as a surprise how many number-theoretic problems there 
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are which ask for the solution to some "exact equation"--but which, when you jiggle 
these problems and ask for the structure of their "near-misses," produce yet more 
profound problems with broader implications. One does not have to go far to see 
examples of this:  

1. Consider the ancient theorem (ascribed to Theaetetus) which asserts that if d is 
a natural number which is not a perfect square of an integer, then d1/2 is irrational. 
That is, X2 - dY2 is never zero unless X and Y both are. If you ask "near-miss 
versions" of this— e.g.., how close to zero can X2 - dY2 get, and how often—you 
find yourself with the famous problems first considered by Brahmagupta in the 
seventh century, or Bhaskára in the twelfth (and, of course, the seventeenth 
century European mathematicians, Fermat included). The full elucidation of this 
near-miss problem, which brings in the theory of continued fractions and of 
quadratic number fields, is still not entirely understood. Moreover, the "partial 
elucidation" of this near-miss problem that is currently available to us has found 
immense applications.  

2. Consider the following (superficially similar) problem. The polynomial X3 - Y2 
can, of course, achieve the value zero when X is a perfect square. Suppose, 
however, that X is not a perfect square. How close to zero can X3 - Y2 get, for 
appropriate choice of Y? A celebrated conjecture of Hall formulates a neat (still 
conjectural!) answer to this question3 which is now but a special case of some 
grand conjectures of Vojta. Vojta made his conjectures by "unifying" the language 
of Nevanlinna's work in complex variables, with Diophantine geometry. Hall's 
conjecture, and Vojta's generalizations are also directly related to the fundamental 
"ABC-conjecture" due to Masser and Oesterlé, which provides a "quantitative" 
version of the following qualitative assertion: there is a strong inhibition for two 
(relatively prime) natural numbers which are highly divisible by perfect powers to 
have the property that their sum is also highly divisible by a perfect power.  

Elkies' article is concerned with a general program for investigating the "near-miss" 
arithmetic of polynomial relations (and "near-polynomial" relations). Take, for 
example, the case of projective plane curves given by the zeroes F(x,y,z) = 0, 
where F(x,y,z) is a homogeneous polynomial with integer coefficients. In this case 
we wish to study the number N of relatively prime triples of integers (x,y,z), each of 
these integers being of size less than a given bound B, such that the absolute 
value of F(x,y,z) is small, say less than a quantity C. More specifically, we want to 
understand the asymptotics of N in terms of the bounds B and C. Questions of this 
sort are at the heart of much pure research and of many practical applications in 
present-day number theory. In asking them one is in very difficult theoretical 
terrain, and to make progress it is important to augment one's analyses with 
intensive computer experimentation. Elkies has done his work devising algorithms 
that markedly extend the range of values that are feasible for computation, thereby 
giving number theorists an opportunity to achieve greater intimacy with the 
phenomena that show up only at large numbers. Elkies' algorithms reduce the 
computation to large quantities of lattice reductions. His algorithm, by its very 
nature, "parallelizes" well. Moreover it can be analyzed quite cleanly in terms of 
theoretical running-time, this analysis being of interest on its own, but also of 
interest for the most practical of reasons.  

The research program inherent in what I have tried to describe in the preceding 
paragraph pushes to the extreme limit of present-day capabilities the purest 
mathematics, and the most applied technology of computation. It also unifies them, 
the pure and the applied, making each goad the other on.  

  

3 Hall's conjecture would have it that for any exponent a <1/2 there is a constant Ca > 0 such that 

|X3 - Y2| is greater than Ca Xa for all X < Y such that X3 - Y2 is not zero. Back to Text 
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