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Research Opportunities in 
Nonlinear Partial Differential 
Equations 

L. EVANS 

I believe that a great development in mathematics for the new decades will be the 
continued rise of theory and applications for nonlinear partial differential equations. 
Unlike many highly evolved areas of classical mathematics, the general area of 
nonlinear PDE is mostly wide open. There are many fascinating and important 
nonlinear equations that we have only superficially studied. There are certainly 
significant, and perhaps not technically so difficult, discoveries to be made for most 
of these equations.  

The last century saw the rise of linear analysis, motivated most strongly by 
quantum mechanics. But by now there is huge accumulated insight into nonlinear 
phenomena, largely justifying hopes that underlying are a few, basic governing 
mathematical concepts. Some of these have long been known (e.g. convexity 
inequalities, shock wave effects), and others are more recent (e.g. energy 
concentration, nonlinear averaging phenomena, etc.). The hope and expectation is 
that these mathematical principles can be better clarified, through a combination of 
rigorous theory, phenomena-based heuristics, and computer experimentation. The 
central issue for theoreticians in particular will be to move beyond perturbation 
theory, presumably to understand the proper notions of generalized solutions 
existing in the large. 

SOME HIGHLIGHTS 

1. Free boundary problems. Many PDE, primarily those describing phase 
transitions or fluid/air interfaces in physics and optimal stopping times in 
economics, entail unknown free boundaries. These are generally extremely difficult 
to handle rigorously, since the geometry of the unknown boundary affects the 
solution of the relevant PDE, and vice versa. The past twenty years have seen 
extraordinary progress, mostly towards showing that the free boundaries are 
"almost everywhere" smooth surfaces. This has been a deep application of 
geometric measure theory methods.  

2. Dispersive equations and harmonic analysis. A major recent development 
has been the influx into nonlinear PDE theory of researchers trained in and 
inspired by classical harmonic analysis. The occasion has been the development 
of new Fourier transform methods, both to provide subtle, detailed estimates for 
the wave and Schrödinger operators and related linear PDE, and to handle certain 
natural polynomial nonlinearities.  

3. Optimal transport. Another emerging area applies PDE methods for optimal 
"mass transport" problems. The basic issue is to find, among all mappings that 
rearrange a given measure into another, one which minimizes a cost functional. 
This seemingly very specific math problem turns out to have an extraordinary 
range of applications, to geometry, optimal design, stochastic models, and even 
fluid mechanics and meteorology. The highly nonlinear Monge-Ampere equation is 
at the heart of much of this.  

4. Conservation laws. Nonlinear conservation laws record the basic physics for 
many systems, and these seemingly simple equations in fact support 
extraordinarily complicated solutions. A hallmark of these PDE is the advent of 
shock wave discontinuities, the structures of which are restricted by entropy 
inequalities of various types: we must accept discontinuous, weak solutions. This 
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subject has always been very close to numerical analysis, both in taking computer 
simulations to suggest new theory and in providing rigorous convergence proofs 
for algorithms. With the recent breakthroughs on uniqueness of weak solutions, I 
expect substantial renewed progress.  

5. Stochastic differential equations, continuum limits. Random ODE provide 
many interesting links to PDE theory, both linear and nonlinear. Among the most 
important are continuum limit problems for interacting stochastic particle systems, 
which have seen some major recent successes. Stochastic partial differential 
equations on the other hand have presented real challenges for theoreticians, 
largely owing to the singular structure of multidimensional "white noise".  

6. Geometric motion. Many physical systems in appropriate asymptotic limits give 
rise to interfaces that evolve in time according to fairly simple geometric laws, for 
instance that the normal velocity equal the mean curvature. Such geometric 
evolution problems confront us with a spectrum of issues, from designing good 
numerical schemes to understanding changes in topological type. There is already 
a substantial literature on these topics, both theoretical and numerical, including 
applications to image processing, semiconductor etching, etc. Particularly useful 
has been the level set method of describing the moving interface in terms of an 
ambient "order parameter", which solves an appropriate nonlinear PDE.  

7. Other geometric PDE. The past years have seen a great flowering of 
geometry, made possible at least in part by methods of nonlinear elliptic PDE, both 
single equations and systems. I expect this trend to continue, with perhaps more 
input from the theory of hyperbolic equations.  

8. Dynamical methods in the calculus of variations. The PDE governing many 
nonequilibrium systems can be approximated by taking time to be discrete, and 
then solving a minimization problem over each time interval. There remain 
however profound problems in understanding the limit of the approximations as the 
time step goes to zero. I believe there is a great subject waiting here to be 
discovered, some sort of "time-dependent calculus of variations".  

9. Kinetic formulations. The French PDE school has during the past decade 
pioneered a fascinating "kinetic" approach to nonlinear transport equations, based 
upon analogies with the classical passage from the Boltzmann equation to fluid 
mechanics. The physical procedure is still mathematically unjustified, but some 
related, and rigorous, procedures provide useful representation formulas for 
solutions of various nonlinear transport PDE, in terms of functions of more 
variables ("velocities").  

10. Viscosity solutions. The notion of "viscosity solutions" has provided a robust 
and extremely flexible collection of tools for understanding weak solutions of 
certain highly nonlinear PDE that satisfy a maximum principle. The biggest 
successes have been in justifying dynamic programming procedures in control 
theory, but other applications have included large deviation estimates, interface 
motions, Hamiltonian dynamics, etc. 
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