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Beyond Flatland: The Future 
of Space and Time 

R. STERN 

Excitement has been generated by the idea that the puniest of all forces, gravity, 
may in fact be as strong as nature's other three fundamental forces: the strong 
force which binds protons and neutrons together in atomic nuclei, the weak force 
which governs radioactive decay, and the forces that govern electricity and 
magnetism. The perceived mismatch between these three forces and gravity 
creates a theoretical nightmare; it is the principal reason we have yet to find a 
grand unified theory. However, it has recently been hypothesized that this 
weakness is a mirage: the force of gravity only appears weak because its force is 
diluted in our own universe and most of gravity's force radiates out into extra 
dimensions. All other forces remain trapped in our three-dimensional world, while 
gravity is free to roam other dimensions. With this hypothesis, there could be other 
worlds that are parallel to our own; they all neatly stack up, each oblivious of the 
other, with gravity the only force that moves between them. This would also 
account for the missing dark matter of our universe; it actually resides in other 
parallel universes.  

New mathematics will be generated to further explore these ideas; well-developed 
mathematics will also be called into play. Even before this new idea, much of the 
relevant mathematics stirred enormous interest in the mathematical community; it 
already has exposed the special nature of dimensions three and four.  

The basic subjects for this study are objects called manifolds. Manifolds are 
spaces which at any point look like Euclidean space. The dimension of a manifold 
is the dimension of this Euclidean space. While locally manifolds are very familiar, 
their global structure can be unimaginably complex. Manifolds permeate much of 
mathematics, physics, and engineering. Manifolds appear as the space of 
solutions to differential equations, as the phase space for physical problems and 
phenomena, and as the domain in which one studies the theory of differential 
equations. We live in a world that at any point looks like three-dimensional 
Euclidean space; with time included, we live in a world that at any point looks like 
four-dimensional Euclidean space.  

A natural task is to classify n-dimensional manifolds; i.e., for a given integer n, give 
a list of all n-dimensional manifolds. The circle is an example of a one-dimensional 
manifold and is, in fact, the only one-dimensional manifold that is compact, i.e., 
can be covered by a finite number of Euclidean neighborhoods. Familiar two-
dimensional compact manifolds are the sphere (e.g., the surface of the earth), the 
torus (e.g. a coffee-cup with one handle), or a sphere with several handles (e.g., 
coffee-cup with many handles). Other less obvious examples of two-dimensional 
compact manifolds are the collection of lines in Euclidean three-space which go 
through the origin (called the projective plane), and the projective plane with 
handles attached to it like handles can be attached to a coffee-cup. These, in fact, 
are the only two-dimensional compact manifolds. While these low dimensional 
manifolds are still easily imagined, the situation is much more complex in higher 
dimensions.  

Exciting and deep mathematical work during 1960-1975 accomplished the 
remarkable feat of classifying manifolds in every dimension greater than four. 
However, this feat turns into defeat in dimensions three and four; the techniques 
used do not work in these physically important dimensions. Roughly speaking, one 
only needs to understand the properties of a manifold up to half its dimension; a 
duality theory shows that for an n-dimensional manifold, properties that can be 
verified in r dimensions are also true in (n-r) dimensions. There is one catch--a 
knotting phenomenon occurs in dimension (n-2) analogous to the knotting of 
circles in the three-dimensional sphere. Thus, in order to understand four-

页码，1/2NSF 01-20 - Opportunities for the Mathematical Sciences - Beyond Flatl...

2011-9-27http://www.nsf.gov/pubs/2002/nsf0120/nsf0120_26.htm



and time
 Mathematics in 

molecular biology 
and medicine

 The year 2000 in 
geometry and 
topology

 Computations and 
numerical 
simulations

 Numbers, insights 
and pictures: using 
mathematics and 
computing to 
understand 
mathematical 
models

List of Contributors 
with Affiliations

dimensional manifolds we need to understand phenomena up through dimension 
4/2=2, but this is precisely the dimension in which knotting can occur (2=4-2). 
Similarly, for three-dimensional manifolds, knotting obstructs understanding their 
one-dimensional properties.  

It has been the very exciting and much deeper mathematics of the last twenty 
years that has attempted to understand these three- and four-dimensional 
manifolds. However, the techniques used for these two dimensions have diverged. 
In dimension three there is a conjectured classification: every three manifold can 
be cut along two-dimensional tori so that the resulting pieces possess one of the 
eight classical geometries in dimension three. This geometrization conjecture is 
the target of many international research groups.  

The situation is far worse in dimension four; there is not even a conjectured 
classification of four-dimensional manifolds. An arsenal of techniques has been 
thrown at this problem; it is the focus of dozens of international research groups. 
The most successful attempts have associated to each four-dimensional manifold 
the solution space to complex systems of equations that arise in particle physics: 
the Yang-Mills equations and the monopole equations of Seiberg and Witten. 
These solution spaces are useful in distinguishing cunningly constructed four-
dimensional manifolds. The result of this assault is that four-dimensional manifolds 
are more complicated than we ever expected. The discovery of large new families 
of four-dimensional manifolds has led many researchers to believe that we have 
yet to find the mother lode. As a result, it is impossible to predict a classification 
scheme. This area continues to capture the excitement of the international 
mathematics community. Whenever interest momentarily wanes, there are new 
discoveries by the physicists that lead to new equations whose solution spaces are 
used to study these four-dimensional manifolds. Conversely, the new 
constructions, computations, and analysis provided by the mathematicians yield 
new insight into the structure of space-time and help structure the physics.  

The above notion that there may indeed be parallel universes may well be 
explained by the theory of foliations on manifolds, i.e., a decomposition of an n-
dimensional manifold as the disjoint union of submanifolds, called leaves, of lower 
dimension. For example, the three-dimensional sphere has a beautiful foliation by 
two-dimensional submanifolds: the Reeb foliation has as leaves copies of the 
Euclidean plane except for one leaf which is the torus. Foliations were well studied 
in the 1970s through the 1990s. However, their resurgence is imminent especially 
in the context of singular foliations, i.e., foliations of the complement of a 
prescribed singular set. For example, it is easy to show that amongst compact two-
dimensional manifolds only the two-dimensional torus possesses a foliation with 
one-dimensional leaves. However, every two-manifold does have a foliation with 
one-dimensional leaves in the complement of a finite set of points. It is the 
behavior of these foliations at these singularities that gives rise to new insights into 
the geometry of surfaces and the study of three-dimensional manifolds. Likewise, 
the study of singular foliations may well structure the way in which we view our 
own universe, how we stack up with possible other parallel universes, and how 
gravity is that force that we can perceive yet floats freely between these universes. 
Better yet, these singular foliations may well provide new insight into the 
classification of four-dimensional manifolds.  
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