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Future Challenges in 
Analysis 

R. COIFMAN 

Mathematical analysis, and in particular Harmonic Analysis, has traditionally been 
tied to physical modeling, providing the language to describe the infinitesimal laws 
of nature through calculus and partial differential expressions as well as 
descriptions of field effects through integral operators, spectral and functional 
analysis.  

While powerful conceptually, many of the tools developed ignore issues of 
effective computability, seemingly limiting their use as tools for scientific modeling 
of complex phenomena. On the other hand, the detailed analytic tools and 
methods developed through the twentieth century to prove sharp quantitative 
estimates in analysis, tools that required subtle functional and operator 
decompositions, can be adapted to provide the necessary insights to deal with 
some of the complex computational issues confronting scientists and engineers.  

A change in the paradigm of applying mathematics in the natural sciences is 
occurring, in which the organization of a proof and its methodology are converted 
into a numerical algorithm replacing traditional formulas to encapsulate natural 
processes.  

More specifically, over the last few years we have been forced to re-examine the 
view that scientific computation for simulation can be achieved by direct 
computation involving straightforward sample space descriptions of data. Recent 
algorithmic developments in which the data to be manipulated is described 
efficiently as a superposition of structures (multipoles, locally adapted basis 
functions, numerically compressed waveform clusters) have permitted 
breakthroughs in electromagnetic and potential theoretic computations.  

In these algorithms the physical data is organized by modeling its natural physical 
and geometric interactions, and by following precisely the actual analytical effects 
of electrostatic or electromagnetic fields. The numerical algorithm for the most 
efficient computation has become a detailed description of the physical 
phenomenon that it models. The simplest illustration occurs in the case of 
gravitational mass interactions. Here the goal is to compute the quantities 

 

The naive approach requires N2 computations. It was already clear to Newton that 
if xj is far from a cluster of masses at xk then the gravitational potential at xj is 
roughly M/R, where M=m1+ . . .+mN and R is the distance between xj and the 
center of gravity of the other masses, essentially trivializing the computation of the 
potential at a distance. A detailed numerical algorithm in which the masses are 
organized into clusters at different scales has been given by Rokhlin (this 
algorithm follows the classical Calderon-Zygmund decomposition paradigm). It 
provides a method for computing gravitational effects everywhere in order of N log 
1/e computations with precision e.  

Complex electromagnetic field computations that provide detailed field description, 
from geometric optics in the far field, through diffraction, to detailed subwavelength 
descriptions, have also been done recently. Again, the algorithm provides a 
detailed description of the physics in nonasymptotic regimes where classical 
formulas cannot describe complex field effects.  

页码，1/3NSF 01-20 - Opportunities for the Mathematical Sciences - Future Chall...

2011-9-27http://www.nsf.gov/pubs/2002/nsf0120/nsf0120_14.htm



and time
 Mathematics in 

molecular biology 
and medicine

 The year 2000 in 
geometry and 
topology

 Computations and 
numerical 
simulations

 Numbers, insights 
and pictures: using 
mathematics and 
computing to 
understand 
mathematical 
models

List of Contributors 
with Affiliations

These methods have been streamlined to provide a multiresolution analysis setup 
formalizing the decomposition and analysis of interactions on certain scales and 
scale transitions to enable computations of effective fields and precise descriptions 
of cluster interactions.  

It is quite clear that we are seeing the evolution of a mathematical/algorithmic 
language permitting the description of complex laws of nature.  

This is quite different from the use of the computer as a powerful machine which 
can accumulate the totality of microscopic effects to provide a result. (The 
gravitational pull between two far masses is indeed the sum of contributions of all 
individual atomic masses but this is effectively the field between two particles 
having respectively their total mass at their center of gravity.)  

To continue the story, in attempting to understand the electrostatic fields of 
charges distributed on complicated curves or surfaces, i.e., effective coding of the 
underlying field geometry, certain new combinatoric algorithms have been 
developed by P. Jones, G. David, and S. Semmes. These algorithms yield 
quantitative ways to deal with the traveling salesman problem, as well as 
corresponding higher-dimensional versions. In particular, given a data set of points 
in N dimensions, which is assumed to lie in a two- (or higher-) dimensional 
surface, there is a simple test to verify if the set can by parametrized by two 
parameters so that the distance in two dimensions is of the same order as the 
distance in the N-dimensional space. In other words, there are simple statistical 
geometric tests to verify parametric dependence. Unlike preceding results, these 
methods come with low computational loads and complete analysis. Again the 
brute force approach by optimizing obvious quantities (or the microscopic partial 
differential equation) works well for small data sets and low dimensionality but fails 
to describe the internal geometric structures.  

The results by Jones, David, and Semmes, built on fifty years of detailed analysis 
of the relations between geometry and field distributions, also provide many 
geometric counterexamples, proving that a naive direct approach is hopeless. (In 
this area of analytic geometry all descriptions of geometry are given in terms of 
multiscale deviations from simple patterns with quantitative estimates on condition 
numbers.) Again nature is not described by a neat formula but by the rules of 
cluster interactions. Fractals provide a simple illustration of the need for such 
descriptions; it is remarkable that such descriptions are essential for the traveling 
salesman problem and provide data based estimations of the shortest curve or 
minimal surface going through the points (in order of N log N computations).  

In attempting to simulate structural interactions between large proteins, one is also 
forced to invent appropriate mathematical descriptions to enable computation. This 
mode is clearly a basic scientific paradigm. The ability to compute effectively is 
directly tied to our ability to transcribe nature mathematically providing a deeper 
meaning to scientific computation (as opposed to computer science). Here we 
view algorithms for fast computation as an extension of a traditional description by 
mathematical formulas. A second important issue related to inadequacies of 
current mathematical theory involves our tools for computing functions depending 
on a large number of variables and our understanding of approximations in high 
dimensions. As a result we are unable to describe efficiently complete 
observations of nature.  

It is clear that this state of affairs resembles pre-Newtonian times, when odd 
pieces of calculus were known as well as some laws of mechanics. The invention 
of basic calculus permitted the description of Newtonian mechanics. At this point 
we are missing many essential ingredients; the most obvious involves useful 
transcriptions of measured experimental data for processing and for modeling. 
This includes a basic understanding of the underlying natural structures and is 
most likely to occur as a corollary of specific well-focused modeling questions with 
serious interdisciplinary interactions. The current attempts to deal with organization 
of large or high dimensional data sets by inventing general methods (like various 
neural nets) have their usefulness but are mostly irrelevant if our goal is to 
understand the inherent structure of the data generated in a natural experiment.  

A clear benefit of efficient transcriptions of measured data and tools for feature and 
parameter extraction would be to enhance the performance of instruments as well 
as allow the development of statistical tools for large scale experimental data 
extraction. Again, it might be desirable to build computational tool kits for the 
experimentalist enabling disciplinary customization.  

To summarize, we are challenged by our lack of understanding of analysis and 
geometry in high (> 10) dimension. The main issue involves our ability to evaluate 
effectively an analytical expression. These issues lead to deep structural and 
organizational insights in pure mathematics and provide a natural mechanism to 
test our analytical/synthetic understanding 2. 
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2 Such insights have recently led to the solution by Lacey and Thiele of Calderon's conjecture and 
provided a conversion of Carleson's proof of the convergence of Fourier series into a powerful 

analytic method, as well as deep insights in complex function theory. Back to Text 
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