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Numbers, Insights, and 
Pictures: Using Mathematics 
and Computing to 
Understand Mathematical 
Models 

M. WRIGHT 

Mathematical models are omnipresent in science, engineering, medicine, health, 
and business—there are models of interacting chemical species, the collision of 
stars, multifunctional materials, bridges buffeted by high winds, groundwater 
pollution, a beating heart, spreading epidemics, and tomorrow's stock prices. 
Models are indispensable because the real world's behavior is almost always too 
complicated to understand, and certainly too difficult to predict accurately, by 
observation alone. In extreme cases, certain real-world phenomena that need to 
be studied, such as nuclear explosions or ingestion of carcinogens by babies, do 
not permit systematic observation or even experimentation. Combined with 
intuition, experience, and data, the abstraction and generality of mathematics allow 
us to create models that can be analyzed, tinkered and computed with, and 
visualized.  

Throughout the process of developing any model, mathematical issues arise, such 
as accuracy, uniqueness of the model's solution, unwanted artifacts, and the 
degree to which realism has been sacrificed for simplicity and mathematical 
tractability. But mathematics should go far beyond these questions: since 
mathematics provides insight into reality through models, mathematics (and its 
close colleague, computing) should also generate insights into the models 
themselves. As the world becomes increasingly dependent on models that are 
complex both mathematically and computationally, requiring in some instances 
days of high-performance computations, research in the mathematical sciences is 
needed to create theoretical and numerical foundations for analyzing and 
understanding mathematical models.  

We highlight four areas (among many others) for application of mathematics to 
models.  

1. PROPERTIES OF A MODEL 

Once a trial model has been formulated, it is natural to ask: What are its 
properties? Does it do what I want? If not, why not? These questions can be, and 
typically are, answered in a loose way by experiment, but it is obviously desirable 
to have an array of mathematics that can address these questions more 
rigorously.  

Major progress has been made recently on modeling languages, both general and 
domain-specific, which are in turn tied to the mathematics of symbolic 
computation. When the model includes constraints posed in a suitable modeling 
language, techniques from symbolic computation should be able to determine 
important mathematical properties of the constraint set. Initial steps toward this 
goal have already been taken through "pre-solve" features that can identify and 
automatically remove linear dependencies among certain classes of constraints. 
However, as models become larger, more complex, and more nonlinear, 
increasingly sophisticated analytical methods of this type are needed.  
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In particular, it is of great interest to determine whether the region satisfied by the 
given constraints is convex, unbounded, or empty; and, if empty, some indication 
should be given of the "most offending" constraints and what perturbations could 
make them feasible. Analysis of regions defined by hyperplanes is a standard 
feature of linear programming, but the mathematics needed to characterize (say) 
constraints defined by nonlinear algebraic equations or positive semidefiniteness 
conditions is far beyond today's state of the art. Issues of geometry enter in 
unusual ways, for instance in finding bounds on the number of constraints that 
must hold exactly at the solution, or the multiplicity of critical eigenvalues in 
eigenvalue optimization problems.  

In models based on partial differential equations, a longstanding question about 
the properties of a model involves the effects of the mesh used to solve a 
discretized version of the model (which is, in effect, a model of the model). Some 
general relationships are known between the mesh size and accuracy for many 
classes of equations, but these results are less certain, or unknown, for models 
based on adaptive meshing or with features that imply more favorable accuracy 
estimates.  

2. CONNECTIONS BETWEEN PARTS OF A 
MODEL 

Consider a continuous constrained optimization model in which the Lagrange 
multipliers define the relationship at the solution between the active constraints 
and the objective function. Using these multipliers, it is possible to identify the most 
significant constraints and to gauge the local effect if a single constraint is 
removed. This kind of information, useful as it is, is only the tip of the iceberg of the 
valuable information about models that could be gleaned from deeper analysis. At 
least three roles are clear in this regard.  

(a) Closed-form relationships. For models posed in sufficiently expressive 
modeling languages, new analytical techniques should be able to produce closed-
form specifications of relationships among the parts of a model. These 
relationships need not be restricted to the constraints and objective function, but 
could also include subexpressions and subcalculations that occur in defining the 
problem. For models not posed as constrained optimization problems, the 
combination of a suitable modeling language and symbolic computation 
techniques would allow arbitrary elements in the model to be expressed in terms of 
other elements.  

(b) Numerical relationships at an arbitrary point. Generalizing a standard approach 
from linear programming, any model without constraints can be transformed into a 
related constrained problem by imposing "artificial constraints", namely bounds or 
constraints on variables at their present values, thereby creating an optimization 
problem of which the current point is a solution. Specification of an appropriate 
objective function, such as the degree of satisfaction of a partial differential 
equation, could then provide the ingredients needed to compute the local 
sensitivities of the model's elements to one another.  

(c) Visualization. Computer graphics offers a highly developed means for 
producing wonderful images, but has not (yet) been adapted to represent 
conceptual and numerical relationships among entities in a model. Collaboration 
with computer scientists could lead to techniques that display mathematically 
meaningful connections among parts of a model, and, ideally, that also allow 
models to be interactively modified based on the visualization. Especially for 
models with enormous ranges of scale, the associated visualization needs to draw 
from the underlying mathematics to reflect the scales correctly.  

3. EFFECTS OF PERTURBATIONS 

The qualitative and quantitative effects of perturbations, longstanding topics in 
mathematics, are of obvious importance in understanding models. Every model 
that requires numerical solution on a real computer in any of its parts should, as a 
matter of course, undergo a complete analysis of the effects of finite-precision 
calculation, yet even this elementary step suffers from a lack of mathematical 
support.  

The most-studied form of perturbation analysis for models based on optimization 
involves characterizing the effects on the solution of small changes in the objective 
function and constraints. Depending on the problem, these effects can vary from 
smooth to violently discontinuous. In inequality-constrained optimization, for 
example, small changes in the constraints can totally alter the solution.  
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For well-behaved models satisfying regularity assumptions, matrix analysis can be 
applied in the immediate locality. For linear equations, the singular value 
decomposition explicitly gives, for both the residual and error in the solution, the 
worst-case perturbations in the matrix and in the right-hand side. However, much 
remains unknown about perturbation analysis for more complicated problems, 
such as eigenvalue distribution for unsymmetric matrices and the nature of 
invariant subspaces. Very limited results are known today, and only for the 
simplest of problems, for "medium" (rather than small) perturbations, yet these are 
often the most interesting in practice.  

In real-world modeling, because of restrictions implicit in the problem domain, 
neither the constraints nor the class of admissible perturbations may be fully 
general. Under various sets of appropriately defined restrictions, it is desirable to 
know the worst-case and average-case effects of perturbations—if the most 
pathological cases are excluded, how bad can things be? How bad are they likely 
to be? Research is needed on determining the effects of structured perturbations 
as well as of general perturbations in structured problems. An example of the latter 
occurs in geometric computation, where certain elements in the model are exact 
(such as the coefficients in a geometric formula) and others are subject to 
uncertainty.  

As mentioned earlier, Lagrange multipliers are highly enlightening, but they cannot 
necessarily capture non-local behavior. If a constraint is very close to, but not 
quite, active, its Lagrange multiplier will be zero, whereas a small change in that 
constraint could lead to a completely different solution. A more general 
mathematical concept of "multiplier" is needed, as well as strategies for computing 
numerical bounds that apply to a particular model. (Bounds involving the order of 
unknown constants are of mathematical interest, but will not help a modeler who 
needs to know how much change in the flow rate can be tolerated before the dam 
breaks.)  

In addition to perturbations in the model formulation, the effects of uncertainties, 
changes, and errors in data need a much more careful analysis. In many 
applications, the model itself includes massive data sets, or else the model's 
results are constantly compared with observed data. For either of these cases, it is 
crucial to know whether there is a guaranteed "band of reliability" within which 
small changes in the data do not affect the quality of the solution, where "quality" 
may be defined in various ways. It is also important to quantify the potential 
numerical effects of perturbations in the data, to provide a concrete bound on how 
much the solution may change. If some of the data points are suspect, for 
instance, the model should not have to tie itself in knots just to match them.  

The mathematical challenges include not only analyzing the vast field of possible 
nonlinear behavior for continuous problems, but also defining and discovering the 
effects of perturbation on discrete variables. Perturbation analysis for the latter is 
increasingly needed because of the growing popularity of hybrid systems, which 
contain interacting discrete and continuous components.  

4. DEPENDENCE ON PARAMETERS 

Several decades of research have been devoted to analyzing linear programs 
whose objective and constraints depend in a specific way on one or more 
parameters. (This is a much more structured problem than the study of 
perturbations.) For models posed as general nonlinear optimization problems, 
obtaining tight results about parametric dependence is extremely challenging, 
even when stringent restrictions are imposed on allowable functional forms. Very 
recent work on interior-point methods, for example, shows that problems not 
satisfying regularity conditions can behave in peculiar ways as the controlling 
parameter goes to zero. Important questions involve the forms of the solution's 
dependence on the parameters (continuously? smoothly? almost linearly?), and 
the assumptions needed to make any meaningful statements at all.  

In addition to analytical expressions and order estimates, approaches such as 
numerical solution techniques and problem-specific heuristics warrant exploration 
for models that occur widely in practice, such as differential algebraic equations. 
Another example is semi-infinite optimization problems (finite-dimensional 
problems containing an infinite number of inequality constraints), where there are 
interesting issues about how parameters affect the topology of the feasible region.  

In some instances, the modeler wants parameter-dependent information about 
relationships in the model. For example, a parameterized constraint may be 
redundant when the parameter falls within a certain range. Languages that allow 
modelers the freedom to specify arbitrary elements as "parameters," combined 
with the kind of mathematical techniques that will (it is hoped) be developed, would 
allow this kind of information to be produced.  
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