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Random Matrix Theory, 
Quantum Physics, and 
Analytic Number Theory 

A. GRANVILLE 

Some of the most extraordinary cross-fertilization of ideas in recent mathematics 
comes in understanding the details of the distributions of primes, class numbers, 
ranks of elliptic curves, Frobenius eigenvalues in finite fields, etc., all important 
quantities that can be described in terms of the zeros of certain "zeta functions." 
Following up on earlier work of Montgomery and Dyson, Peter Sarnak of Princeton 
University has been pushing the idea that these spectra can be understood in 
terms of the distribution of eigenvalues from classes of random matrices drawn 
from certain classical groups, and with various collaborators, providing compelling 
evidence that this is so. Much of this is inspired by the work of Wigner, Mehta, and 
Dyson who used these same matrix models (which date back to Hermann Weyl) 
when modeling resonance lines of heavy nuclei (in quantum physics).  

This new approach was inspired by Montgomery's work in the seventies, which 
determined the (Fourier transform of the) pair correlation function for pairs of zeros 
of the Riemann zeta-function in a limited range, and conjectured the pair 
correlation function in all ranges. At the time Dyson noted the analogies between 
Montgomery's results and conjectures, and a large body of work in quantum 
physics, but it was only in the late nineties that Rudnick and Sarnak were able to 
prove the generalization of Montgomery's results for n-level correlations. This led 
researchers to compute such correlation functions for many of the zeta functions of 
interest to number theory, and to determine the statistics of interest to physicists, 
and they quickly revealed much previously hidden structure. Although the 
computations are very suggestive, it is hard to concretely prove much. The one 
exception is the work of Katz and Sarnak on varieties over finite fields: starting 
from Deligne's great work on "equidistribution" of Frobenius eigenvalues for 
varieties over finite fields, they have proved that for many "families" the 
eigenvalues for the varieties are distributed just as the eigenvalues for certain 
classical groups. This is highly applicable work, which should reach into, for 
example, coding theory, and truly changes the limits of our understanding.  

On the conjectural side, many young researchers have been using these ideas to 
delve into otherwise impenetrable questions, or to indicate how one might 
approach difficult problems. One exciting example is the very recent work of 
Conrey, Keating, Rubinstein and Snaith, who have shown that we would expect 
around x3/4 (log x)11/8 of the quadratic twists of a given elliptic curve to have rank 
bigger than one, a level of precision until recently unimaginable.  
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