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The Year 2000 in Geometry 
and Topology 

C. TAUBES 

I will start with a preamble to introduce a definition for the science of mathematics 
as to distinguish it from the physical sciences.  

Mathematics consists of the study of all possible worlds, with the goal of 
uncovering transcendent, universal relationships and underlying 
symmetries. 

By way of contrast, fields such as physics or chemistry or biology are concerned, 
by definition, with the details of the particular universe that we inhabit. This is to 
say that the charge for the physical sciences can be summarized as follows:  

Provide a predictive understanding of the given universe. 

The physical sciences find mathematics useful, and often remarkably so, because 
the underlying relationships which transcend our particular universe yield 
predictions which would be unfathomable with a focus that restricts solely to our 
own world.  

In any event, abstract mathematics research, understood as the exploration of the 
contingent possibilities for a universe, is as important a scientific undertaking as 
the exploration of the universe at hand. Utility to other sciences only strengthens 
the import of pure mathematical research. However, an honest comparison of 
abstract mathematics to other scientific enterprises must mention one difference: 
Lucrative and patentable discoveries in pure mathematics are relatively rare.  

The preamble is now over, and what follows is a brief description of three areas of 
geometry and topology that will see, to my thinking, some very exciting 
developments in the next few years.  

The first area concerns three- and four-dimensional differential topology. At issue 
here is the complete classification of all three- and, likewise, four-dimensional 
spaces which look to a local observer to be smooth and flat. In this regard, I will tie 
into my preamble by saying that these subjects are quite explicitly about listing all 
possible shapes for the universe (with `time' as the fourth dimension). Of course, 
the precise shape of our particular universe is a question for astrophysics and 
cosmology: the mathematical goal is to determine the list of possible shapes.  

For the three-dimensional case, there is a very precise conjecture (known as the 
Geometrization Conjecture) which postulates that any three-dimensional shape of 
the type under consideration can be made in a modular fashion using copies from 
a set of eight extremely symmetric homogeneous shapes. This conjecture is 
almost universally believed to be true, and there are no known potential 
counterexamples. It is entirely possible that some or all of the as yet unproved 
subcases of the conjecture will be established in the next few years. A complete 
proof of the conjecture would close the book on a fundamental question that has 
been under intense investigation since the first decade of the twentieth century.  

By way of contrast, the four-dimensional classification problem is wide open; there 
are no reasonable conjectures for the answer. However, recent new tools have 
been brought to the subject. These include new differential equations coming from 
quantum physics and also from classical complex number theory. These novel 
tools have led to the demolition of all of the old conjectures. Moreover, the full 
power of these new tools has yet to be determined; so the next few years may be 
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quite exciting as their power is more fully explored.  

The second area of excitement centers on a subject called "mirror symmetry." This 
subject concerns a very unexpected and unexplained symmetry which relates 
some special six-dimensional spaces that arise in string theoretic physics. To bring 
my preamble into play, you should note that only a very small set of these spaces 
could provide a reasonable string theoretic model for the real world; the rest 
presumably describe unrealized string theoretic universes.  

The special six-dimensional spaces are known as Calabi-Yau manifolds and have 
been studied by pure mathematicians independently for quite some time. 
However, their applications to string theoretic physics led to the discovery of a sort 
of transformation amongst these spaces which relates the properties of one to 
some very different properties of another. It is as if the points in one Calabi-Yau 
space correspond somehow to certain three-dimensional subspaces of another. 
Corresponding Calabi-Yau spaces are called mirrors of each other, hence the 
name "mirror symmetry." In any event, this mirror symmetry implies the most 
unexpected relationships between seemingly unrelated properties of seemingly 
unrelated spaces. This sort of symmetry is completely new to mathematics and 
has generated a huge amount of interest and research. Here, the research 
touches on a very diverse suite of mathematics, ranging from differential equations 
to algebra and number theory.  

By the way, the full scope of the implications of the mirror symmetry has yet to be 
determined. Moreover, there is some speculation that a version of mirror symmetry 
may exist for a more general set of spaces.  

My final area to discuss is that of complex dynamics. The goal here is to 
understand the appearance of chaos in a suite of highly idealized models for 
nonlinear dynamics. To tie the story to my preamble, let me remind you that many 
of nature's phenomena have chaotic, turbulent or fractal-like properties. 
Meanwhile, the underlying equations of motion are universally believed to be 
completely deterministic. (Even quantum mechanics is deterministic in an 
appropriate sense.) However, our ability to predict the appearance and form of 
chaos from the underlying deterministic equations is at a very rudimentary stage. 
Thus, the study of idealized dynamical systems can shed light on the inevitably 
messy dynamics of the real world.  

In any event, the subject of complex dynamics concerns some very special 
dynamics on a spherical or planar surface. The dynamics here can be chaotic in 
some regions and completely controlled in others. Most probably, you have seen 
pictures of very complicated "Mandelbrot sets;" the understanding of these sets is 
part of what is at stake here. More to the point, the goal is to develop a predictive 
understanding for the appearance and type of chaos which can arise in these 
dynamical systems. The techniques involve a suite of ideas which range from the 
theory of complex numbers through differential equations to "renormalization" as 
practiced by physicists. In recent years, a conjecture of sorts has crystallized 
which, if true, provides a fundamental basis for our understanding of chaotic 
phenomena.  

The verification of this conjecture is certainly within reach and may well occur in 
the next few years. The field now is very exciting, as a host of top mathematicians 
are involved in the investigations. By the way, it is also the case that there are 
intriguing parallels between the phenomena which appear here and those which 
appear in the study of three-dimensional manifolds. The elucidation of these 
parallels has been beneficial to both subjects.  
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