
10    communications of the acm    |   august 2012  |   vol.  55  |   no.  8

Follow us on Twitter at http://twitter.com/blogCACM

The Communications Web site, http://cacm.acm.org,  
features more than a dozen bloggers in the BLOG@CACM  
community. In each issue of Communications, we’ll publish  
selected posts or excerpts.

John Langford 
“Research Directions 
for Machine Learning 
and Algorithms”
http://cacm.acm.org/
blogs/blog-cacm/108385 
May 16, 2011

S. Muthu Muthukrishnan invited me 
to the National Science Foundation’s 
Workshop on Algorithms in the Field 
with the goal of providing a sense of 
where near-term research should go. 
When the time came, though, I instead 
bargained for a post, which provides a 
chance for other people to comment.

There are several things I did not 
fully understand when I went to Yahoo! 
about five years ago. I would like to re-
peat them as people in academia may 
not yet understand them intuitively.

1.	 Almost all the big-impact algo-
rithms operate in pseudo-linear or 
better time. Think about caching, 
hashing, sorting, filtering, etc. and you 
have a sense of what some of the most 
heavily used algorithms are. This mat-
ters quite a bit to machine learning 

bigger than you might otherwise ex-
pect. A third is that real organizations 
have people coming and going, and 
any project that is by just one person 
withers when that person leaves. This 
observation means the development 
of systems with clean abstractions can 
be extraordinarily helpful, as it allows 
people to work independently. This 
observation also means simple wide-
ly applicable tricks (for example, the 
hashing trick) can be broadly helpful.

A good way to phrase research direc-
tions is with questions. Here are a few 
of my natural questions.

1.	 How do we efficiently learn 
in settings where exploration is re-
quired? These are settings where the 
choice of action you take influences 
the observed reward—ad display and 
medical testing are two good scenari-
os. This is deeply critical to many ap-
plications because the learning with 
exploration setting is inherently more 
natural than the standard supervised 
learning setting. The tutorial we did 
detailed much of the state of the art 
here, but very significant questions 
remain. How can we do effective of-
fline evaluation of algorithms? How 
can we be both efficient in sample 
complexity and computational com-
plexity? Several groups are interested 
in sampling from a Bayesian poste-
rior to solve these sorts of problems. 
Where and when can this be proved 
to work? (There is essentially no anal-
ysis.) What is a maximally distributed 
and incentive-compatible algorithm 
that remains efficient? The last ques-
tion is very natural for marketplace 

research, because people often work 
with superlinear time algorithms 
and languages. Two very common ex-
amples of this are graphical models 
where inference is often a superlin-
ear operation—think about the n2 de-
pendence on the number of states in 
a Hidden Markov Model and Kernel-
ized Support Vector Machines where 
optimization is typically quadratic or 
worse. There are two basic reasons 
for this. The most obvious is that lin-
ear time allows you to deal with large 
datasets. A less obvious but critical 
point is that a superlinear time algo-
rithm is inherently buggy; it has an 
unreliable running time that can eas-
ily explode if you accidentally give it 
too much input.

2.	 Almost anything worth doing 
requires many people working to-
gether. This happens for many rea-
sons. One is the time-critical aspect 
of development—in many places it re-
ally is worthwhile to pay more to have 
something developed faster. Another 
is that real projects are simply much 

Machine Learning  
and Algorithms;  
Agile Development 
John Langford poses questions about the direction of research for 
machine learning and algorithms. Ruben Ortega shares lessons  
about agile development practices like Scrum.

doi:10.1145/2240236.2240239			   http://cacm.acm.org/blogs/blog-cacm



blog@cacm

august 2012  |   vol.  55  |   no.  8  |   communications of the acm     11

design. How can we best construct 
reward functions operating on dif-
ferent time scales? What is the rela-
tionship between the realizable and 
agnostic versions of this setting, and 
how can we construct an algorithm 
that smoothly interpolates between 
the two?

2.	 How can we learn from lots of 
data? We will be presenting a KDD 
survey/tutorial about what is been 
done. Some of the larger-scale learn-
ing problems have been addressed ef-
fectively using MapReduce. The best 
example I know is Ozgur Cetin’s algo-
rithm at Yahoo! It is preconditioned 
conjugate gradient with a Newton 
stepsize using two passes over exam-
ples per step. (A nonHadoop version 
is implemented in Vowpal Wabbit 
for reference.) But linear predictors 
are not enough; we would like learn-
ing algorithms that can, for example, 
learn from all the images in the world. 
Doing this well plausibly requires a 
new approach and new learning algo-
rithms. A key observation here is that 
the bandwidth required by the learn-
ing algorithm cannot be too great.

3.	 How can we learn to index effi-
ciently? The standard solution in in-
formation retrieval is to evaluate (or 
approximately evaluate) all objects 
in a database returning the elements 
with the largest score according to 
some learned or constructed scoring 
function. This is an inherently O(n) 
operation, which is frustrating when 
it’s plausible that an exponentially 
faster O(log(n)) solution exists. A good 
solution involves both theory and em-
pirical work here as we need to think 
about how to think about how to solve 
the problem, and of course we need to 
solve it.

4.	 What is a flexible, inherently ef-
ficient language for architecting rep-
resentations for learning algorithms? 
Right now, graphical models often 
get (mis)used for this purpose. It is 
easy and natural to pose a computa-
tionally intractable graphical model, 
implying many real applications in-
volve approximations. A better solu-
tion would be to use a different rep-
resentation language that was always 
computationally tractable yet flexible 
enough to solve real-world problems. 
One starting point for this is Searn. 
Another general approach was the 

topic of the Coarse-to-Fine Learning 
and Inference Workshop. These are 
inherently related as coarse-to-fine is 
a pruned breadth first search. Restat-
ed, it is not enough to have a language 
for specifying your prior structural be-
liefs; instead we must have a language 
that results in computationally trac-
table solutions.

5.	 The deep learning problem re-
mains interesting. How do you effec-
tively learn complex nonlinearities 
capable of better performance than 
a basic linear predictor? An effective 
solution avoids feature engineering. 
Right now, this is almost entirely dealt 
with empirically, but theory could eas-
ily have a role to play in phrasing ap-
propriate optimization algorithms, 
for example.

Good solutions to each of these re-
search directions would result in revo-
lutions in their area, and every one of 
them would plausibly see wide appli-
cability. 

What’s missing?

Ruben Ortega 
“Research in Agile 
Development 
Practices”
http://cacm.acm.org/
blogs/blog-cacm/109811  
June 20, 2011

I am an enthusiastic advocate of agile 
software development practices like 
Scrum. Its ability to allow teams to 
focus on delivering product and com-
municate status has made it one of the 
easiest and best software development 
techniques I have seen in a career that 
has used ad hoc, Waterfall, and every-
thing in between.

Recent research from New Zealand 
has furthered the cause by performing 
a study that involved 58 practitioners 
in 23 organizations over four years. In 
reading a Victoria University of Wel-
lington article on “Smarter Software 
Development” and then looking at 
Rashina Hoda’s thesis “Self-Organiz-
ing Agile Teams: A Grounded Theory,” 
there are two interesting takeaways:

1.	 Self-organizing scrum teams natu-
rally perform a balancing act between:

˲˲ Freedom and responsibility: The 
team is responsible for collective de-
cision making, assignment, commit-
ment, and measurement, and must 
choose to do them.

˲˲ Cross functionality and specializa-
tion: The team is responsible for de-
ciding when to distribute work across 
team members or have each focus on a 
certain part of the project.

˲˲ Continuous learning and itera-
tion pressure: The team is respon-
sible for delivering on its own sched-
ule and the retrospectives to improve 
each sprint.

The advantage of giving this bal-
ancing act to the team is that it take 
ownership of the solution with the 
full understanding of all the trade-offs 
that will need to occur each sprint. By 
distributing the work to the team, it 
also makes team members account-
able to one another for making sure 
the goals are achieved. 

2.	 Self-organizing teams have their 
members assume some well-defined 
roles spontaneously, informally, and 
transiently to help make their projects 
successful:

˲˲ Mentor: Guides the team in the use 
of agile methods.

˲˲ Coordinator: Manages customer 
expectations and collaboration with 
the team.

˲˲ Translator: Translates customer 
business requirements to technical re-
quirements and back.

˲˲ Champion: Advocates agile team 
approach with senior management.

˲˲ Promoter: Works with customers 
to explain agile development and how 
to collaborate best with the team.

˲˲ Terminator: Removes team mem-
bers that hinders the team’s successful 
functioning.

These roles are an emergent prop-
erty that comes from using agile de-
velopment methods. They are not pre-
scribed explicitly as part of any of the 
agile development philosophies, but 
they arise as part of successful use of 
the methodology.

I am eager to see more research 
emerge as to where agile software 
development practices succeed and 
where they need improvement. There 
is a large body of evidence that shows it 
to be a successful strategy, and having 
the research to support it would help 
encourage its adoption.	

John Langford is a senior researcher at Microsoft 
Research New York. Ruben Ortega is an engineering 
director at Google.

© 2012 ACM 0001-0782/12/08 $15.00 




