网站地图 | 联系我们 | English | 意见反馈 | 主任信箱
 
首页 中心概况 新闻动态 科研进展 交流合作 人才培养 研究队伍 人才招聘 政策规章 数学交叉科学传播
科研进展
科研成果
研究专题
获奖
现在位置:首页 > 科研进展 > 科研成果
非线性不确定系统的扩展PID理论
【打印】【关闭】

  2021-9-2

非线性不确定系统的扩展PID理论(赵成、郭雷)

Over the past 60 years, remarkable progresses in modern control theory have been made, e.g., numerous advanced control techniques including optimal control, robust control, adaptive control, nonlinear control, intelligent control, etc., have been introduced and investigated. However, the classical PID (proportional-integral-derivative) controller (or its variations), which has nearly 100 years of history, is still the most widely and successfully used one in engineering systems by far, which exhibits its lasting vitality. In fact, a recent survey shows that the PID controller has much higher impact rating than the advanced control technologies. However, it has also been reported that most of the practical PID loops are poorly tuned, and there is strong evidence that PID controllers remain poorly understood. Therefore, it is of vital importance to investigate the rationale of the ubiquitous controller PID.

In fact, the PID controller has been investigated extensively in the literature by numerous control scientists and engineers, but most existing works are focused on linear systems, albeit almost all practical systems are nonlinear with uncertainties. Therefore, to justify the remarkable effectiveness of the PID controllers for real world systems, one has to face with nonlinear uncertain dynamical systems and to understand the rationale and capability of PID controller.

Recently, the authors have investigated the capability of the classical PID control for second-order nonlinear uncertain systems and provided some analytic design methods for the choices of PID parameters, where the system is assumed to be in the form of cascade integrators. In this article, they have considered the natural extension of the classical PID control for high-order affine-nonlinear uncertain systems. Specifically, the authors have shown that the extended PID controller can semi-globally stabilize the nonlinear uncertain systems, and at the same time the regulation error converges to zero exponentially fast, as long as the control parameters are chosen from an open unbounded parameter set. These theoretical results do not need such special system structures as normal or triangular forms used extensively in the literature for global or semi-global stabilization, thanks to the inherent robustness of the extend PID controller.

Publication:

- IEEE Transactions on Automatic Control, 66, 8, 3840-3847 (2021)

Authors:

- Cheng Zhao (Shandong University)

- Lei Guo (Institute of Systems Science, AMSS, Chinese Academy of Sciences)

欢迎访问国家数学与交叉科学中心 
地址:北京海淀区中关村东路55号 邮编:100190 电话: 86-10-62613242 Fax: 86-10-62616840 邮箱: ncmis@amss.ac.cn