网站地图 | 联系我们 | English | 意见反馈 | 主任信箱
 
首页 中心概况 新闻动态 科研进展 交流合作 人才培养 研究队伍 人才招聘 政策规章 数学交叉科学传播
科研进展
科研成果
研究专题
获奖
现在位置:首页 > 科研进展 > 科研成果
基于重要性惩罚的联合图Lasso方法(IPJGL):通过高斯图模型进行差异网络推断
【打印】【关闭】

  2022-4-29

Motivation: Differential network inference is a fundamental and challenging problem to reveal gene interactions and regulation relationships under different conditions. Many algorithms have been developed for this problem; however, they do not consider the differences between the importance of genes, which may not fit the real-world situation. Different genes have different mutation probabilities, and the vital genes associated with basic life activities have less fault tolerance to mutation. Equally treating all genes may bias the results of differential network inference. Thus, it is necessary to consider the importance of genes in the models of differential network inference.
  
  Results: Based on the Gaussian graphical model with adaptive gene importance regularization, we develop a novel Importance-Penalized Joint Graphical Lasso method (IPJGL) for differential network inference. The presented method is validated by the simulation experiments as well as the real datasets. Furthermore, to precisely evaluate the results of differential network inference, we propose a new metric named APC2 for the differential levels of gene pairs. We apply IPJGL to analyze the TCGA colorectal and breast cancer datasets and find some candidate cancer genes with significant survival analysis results, including SOST for colorectal cancer and RBBP8 for breast cancer. We also conduct further analysis based on the interactions in the Reactome database and confirm the utility of our method.
  
  Availability and implementation: R source code of Importance-Penalized Joint Graphical Lasso is freely available at https://github.com/Wu-Lab/IPJGL.
  Contact: lywu@amss.ac.cn
  Supplementary information: Supplementary data are available at Bioinformatics online.
  Publication:
  Bioinformatics, Volume 38, Issue 3, 1 February 2022, Pages 770–777.
  
  Author:
  Jiacheng Leng
  IAM, MADIS, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
  School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  
  Ling-Yun Wu
  IAM, MADIS, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
  School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

 

欢迎访问国家数学与交叉科学中心 
地址:北京海淀区中关村东路55号 邮编:100190 电话: 86-10-62613242 Fax: 86-10-62616840 邮箱: ncmis@amss.ac.cn