网站地图 | 联系我们  
首页 中心概况 新闻动态 科研进展 交流合作 人才培养 研究队伍 人才招聘 政策规章 数学交叉科学传播
科研进展
科研成果
研究专题
获奖
现在位置:首页 > 科研进展 > 科研成果
标准化场流:求解随机微分方程正反问题的物理机制场流模型方法
【打印】【关闭】

   2022-7-12

We introduce in this work the normalizing field flows (NFF) for learning random fields from scattered measurements. More precisely, we construct a bijective transformation (a normalizing flow characterizing by neural networks) between a Gaussian random field with the Karhunen-Loève (KL) expansion structure and the target stochastic field, where the KL expansion coefficients and the invertible networks are trained by maximizing the sum of the log-likelihood on scattered measurements. This NFF model can be used to solve data-driven forward, inverse, and mixed forward/inverse stochastic partial differential equations in a unified framework. We demonstrate the capability of the proposed NFF model for learning non-Gaussian processes and different types of stochastic partial differential equations. 
     
Publication:  
Journal of Computational Physics, Volume 461, Issue C, Jul 2022. 

 

Author:   

Ling Guo

Department of Mathematics, Shanghai Normal University, Shanghai, China

 

Hao Wu

School of Mathematical Sciences, Tongji University, Shanghai, China

 

Tao Zhou

LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.

E-mail: tzhou@lsec.cc.ac.cn

欢迎访问国家数学与交叉科学中心 
地址:北京海淀区中关村东路55号 邮编:100190 电话: 86-10-62613242 Fax: 86-10-62616840 邮箱: ncmis@amss.ac.cn