网站地图 | 联系我们  
首页 中心概况 新闻动态 科研进展 交流合作 人才培养 研究队伍 人才招聘 政策规章 数学交叉科学传播
科研进展
科研成果
研究专题
获奖
现在位置:首页 > 科研进展 > 科研成果
具有异质有界置信度和随机交互的多维意见动态(陈鸽与合作者)
【打印】【关闭】

This paper introduces a heterogeneous multidimensional bounded confidence (BC) opinion dynamics with random pairwise interactions, whereby each pair of agents accesses each other’s opinions with a specific probability. This revised model is motivated by the observation that the standard Hegselmann–Krause (HK) dynamics requires unrealistic all-to-all interactions at certain configurations. For this randomized BC opinion dynamics, regardless of initial opinions and positive confidence bounds, we show that the agents’ states converge to fixed final opinions in finite time almost surely and that the convergence rate follows a negative exponential distribution in mean square. Furthermore, we establish sufficient conditions for the heterogeneous BC opinion dynamics with random interactions to achieve consensus in finite time.


Publication:


AUTOMATICA


http://dx.doi.org/10.1016/j.automatica.2024.112002


Author:

Jiangjiang Cheng

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Key Laboratory of Systems and Control, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

chengjiangjiang@amss.ac.cn


Ge Chen

Key Laboratory of Systems and Control, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

Corresponding author

chenge@amss.ac.cn


Wenjun Mei

Department of Mechanics and Engineering Science, Peking University, Beijing, 100871, China

mei@pku.edu.cn


Francesco Bullo

Department of Mechanical Engineering and the Center of Control, Dynamical-Systems and Computation, University of California at Santa Barbara, CA 93106-5070, USA

bullo@ucsb.edu


欢迎访问国家数学与交叉科学中心 
地址:北京海淀区中关村东路55号 邮编:100190 电话: 86-10-62613242 Fax: 86-10-62616840 邮箱: ncmis@amss.ac.cn