网站地图 | 联系我们 | English | 意见反馈 | 主任信箱
 
首页 中心概况 新闻动态 科研进展 交流合作 人才培养 研究队伍 人才招聘 政策规章 数学交叉科学传播
学术报告
现在位置:首页 > 学术报告

Symmetric tensor rank, homogeneous polynomial rank and multipartite entangled states under stochastic-LOCC
【2013.7.11 10:00-11:00am,S712】

【打印】【关闭】

 2013-7-8 

  Colloquia & Seminars 

  Speaker

      

   Dr. Lin Chen, Institute for Quantum Computing, University of Waterloo, Canada  

  Title

  

  Symmetric tensor rank, homogeneous polynomial rank and multipartite entangled states under stochastic-LOCC              

 

  Time

    2013.7.11 10:00-11:00am                                      

  Venue

  S712

  Abstract

    The tensor rank (also known as generalized Schmidt rank) of multipartite pure states plays an important role in the study of entanglement classifications and transformations. We employ powerful tools from the theory of homogeneous polynomials to investigate the tensor rank of symmetric states such as the tripartite state |W_3>=1/√3(|100>+|010>+|001>) and its N-partite generalization |W_N>. Previous tensor rank estimates are dramatically improved and we show that (i) three copies of |W_3> have a rank of either 15 or 16, (ii) two copies of |W_N> have a rank of 3N-2, and (iii) n copies of |W_N> have a rank of O(N). A remarkable consequence of these results is that certain multipartite transformations, impossible even probabilistically, can become possible when performed in multiple-copy bunches or when assisted by some catalyzing state. This effect is impossible for bipartite pure states.

  Affiliation

     

欢迎访问国家数学与交叉科学中心 
地址:北京海淀区中关村东路55号 邮编:100190 电话: 86-10-62613242 Fax: 86-10-62616840 邮箱: ncmis@amss.ac.cn