网站地图 | 联系我们 | English | 意见反馈 | 主任信箱
 
首页 中心概况 新闻动态 科研进展 交流合作 人才培养 研究队伍 人才招聘 政策规章 数学交叉科学传播
学术报告
现在位置:首页 > 学术报告

On the dynamics of quasi-periodically perturbed homoclinic solutions
【2013.8.19 4:00pm, S703】

【打印】【关闭】

 2013-8-15 

  Colloquia & Seminars 

  Speaker

      

    

Prof.Kening Lu,BYU,USA

  Title

                           

    On the dynamics of quasi-periodically perturbed homoclinic solutions

  Time

                                          

    2013.8.19 4:00pm 

  Venue

  S703

  Abstract

We study the complicated dynamics of quasi-periodically perturbed ordinary differential equations with a homoclinic orbit to a dissipative saddle point. We show that there are four regions of parameters in which the equations have respectively: (1) attracting quasi-periodic integral manifolds of Levinson type; (2) transition to chaos; (3) strange attractors; (4) homoclinic tangles. In the case of homoclinic tangles, we not only obtain the results on horseshoes similar to the existing ones, but also give a comprehensive geometric description of the structures of tangles. This is a joint work with Wen Huang and Qiudong Wang.

  Affiliation

     

欢迎访问国家数学与交叉科学中心 
地址:北京海淀区中关村东路55号 邮编:100190 电话: 86-10-62613242 Fax: 86-10-62616840 邮箱: ncmis@amss.ac.cn