网站地图 | 联系我们 | English | 意见反馈 | 主任信箱
 
首页 中心概况 新闻动态 科研进展 交流合作 人才培养 研究队伍 人才招聘 政策规章 数学交叉科学传播
学术报告
现在位置:首页 > 学术报告

Degree versions of the Erdos-Ko-Rado and Hilton-Milner Theorem
【2017.6.9 10:00am, N613】

【打印】【关闭】

 2017-05-31 

  Colloquia & Seminars 

  Speaker

Hao Huang,Emory University

  Title

Degree versions of the Erdos-Ko-Rado and Hilton-Milner Theorem

  Time

2017.6.9 10:00-11:00

  Venue

N613

  Abstract

In this talk, I will discuss the proof of a degree version of the celebrated Erd\H os-Ko-Rado theorem: given $n>2k$, for every intersecting $k$-uniform hypergraph $H$ on $n$ vertices, there exists a vertex that lies on at most $\binom{n-2}{k-2}$ edges. A degree version of the Hilton-Milner theorem was also proved for sufficiently large $n$.
The talk is based on joint works with Peter Frankl, Jie Han and Yi Zhao.

  Affiliation

 

欢迎访问国家数学与交叉科学中心 
地址:北京海淀区中关村东路55号 邮编:100190 电话: 86-10-62613242 Fax: 86-10-62616840 邮箱: ncmis@amss.ac.cn