局部间断有限元的超收敛 【2024.07.22 15:00, N204】 |
【大 中 小】【打印】【关闭】 |
2024-7-21 Colloquia Seminars Speaker | 张智民教授,美国韦恩州立大学 | Title | 局部间断有限元的超收敛 | Time | 7月22日15:00-16:00 | Venue | N204 | Abstract | The phenomenon of superconvergence is well understood for the h-version finite element method, and researchers in this established field have accumulated a vast body of literature over the past 60 years. However, there is a lack of relevant studies for other numerical methods such as the p-version finite element method, spectral methods, discontinuous Galerkin methods, and finite volume methods. We believe that the scientific community would also benefit from studying of superconvergence phenomenon in these methods. In the last decade, efforts have been made to expand the scope of superconvergence. In this talk, we present some recent developments in the study of superconvergence for the local discontinuous Galerkin methods. | Affiliation | 张智民,中国科学技术大学学士(1982)硕士(1985),美国马里兰大学(University of Maryland,College Park)博士(1991);美国韦恩州立大学(Wayne State University)教授(2002-); 教育部“长江学者”(2010);海外高层次人才(2012)。现任和曾任10个国内外数学杂志编委,包括Mathematics of Computation(2009-2017)、Journal of Scientific Computing(2011-2017)、Numerical methods for Partial Differential Equations(2013-)、Journal of Computational Mathematics(2007-)、Communications on Applied Mathematics and Computation(2019-)、CSIAM Transaction on Applied Mathematics(2019-)、《数学文化》(2010-)等。发表SCI论文200余篇。2014年以前,主持过10个美国国家基金会的项目;2014年以后主持过9个国家自然科学基金委员会的重点、面上、天元、国际交流等项目。 张智民教授长期从事计算方法,尤其是有限元方法的研究,在单元构造、超收敛、后验误差估计和自适应算法等领域的研究取得了多项创新成果,在国际上第一个建立起广为流行的ZZ离散重构格式的数学理论,所提出的多项式保持重构(Polynomial Preserving Recovery—PPR)方法2008年被大型商业软件COMSOL Multiphysics 采用并沿用至今。 | |
|