网站地图 | 联系我们  
首页 中心概况 新闻动态 科研进展 交流合作 人才培养 研究队伍 人才招聘 政策规章 数学交叉科学传播
学术报告
现在位置:首页 > 学术报告

Minimum Entangling Power is Close to Its Maximum
【2013.1.10 10:15am,S703】

【打印】【关闭】

 2013-1-6 

  Colloquia & Seminars 

  Speaker

  Dr. Jianxin Chen,University of Guelph

  Title

  Minimum Entangling Power is Close to Its Maximum

  Time

  2013.1.10 10:15am

  Venue

  S703

  Abstract

     Given a quantum gate U acting on a bipartite quantum system, its maximum (average, minimum) entangling power is the maximum (average, minimum) entanglement generation with respect to certain entanglement measure when the inputs are restricted to be product states. In this paper, we mainly focus on the 'weakest' one, i.e., the minimum entangling power, among all these entangling powers. We show that, by choosing von Neumann entropy of reduced density operator or Schmidt rank as entanglement measure, even the 'weakest' entangling power is generically very close to its maximal possible entanglement generation. In other words, maximum, average and minimum entangling powers are generically close. We then study minimum entangling power with respect to other Lipschitiz-continuous entanglement measures and generalize our results to multipartite quantum systems.

  Affiliation

    

欢迎访问国家数学与交叉科学中心 
地址:北京海淀区中关村东路55号 邮编:100190 电话: 86-10-62613242 Fax: 86-10-62616840 邮箱: ncmis@amss.ac.cn