网站地图 | 联系我们  
首页 中心概况 新闻动态 科研进展 交流合作 人才培养 研究队伍 人才招聘 政策规章 数学交叉科学传播
学术报告
现在位置:首页 > 学术报告

Smoothed full-scale covariance approximation for large spatial data sets
【2015.6.16 3:30pm, Z311】

【打印】【关闭】

 2015-5-28 

  Colloquia & Seminars 

  Speaker

Prof. Huiyan Sang,Texas A&M University, USA 

  Title

Smoothed full-scale covariance approximation for large spatial data sets

  Time

2015.6.16 15:30-16:30    

  Venue

Z311

  Abstract

With the advent of remote sensing and GPS techniques, spatial data collection capacity increases dramatically. The growth in data size imposes challenges to classical spatial modeling methods and has driven the innovations of new modeling and computation tools scalable and parallelizable to handle large datasets. This work extends the state-of-the-art full scale covariance approximation approach that combines merits of reduced rank methods and sparse approximations, by accounting for the dependence across blocks of the residual covariance. We show that the proposed likelihood approximation approach induces a valid Gaussian process, which allows for a unified framework for model estimation and spatial prediction following standard kriging methods.      

  Affiliation

 

欢迎访问国家数学与交叉科学中心 
地址:北京海淀区中关村东路55号 邮编:100190 电话: 86-10-62613242 Fax: 86-10-62616840 邮箱: ncmis@amss.ac.cn