网站地图 | 联系我们  
首页 中心概况 新闻动态 科研进展 交流合作 人才培养 研究队伍 人才招聘 政策规章 数学交叉科学传播
学术报告
现在位置:首页 > 学术报告

A RKHS-based semiparametric approach to nonlinear dimension reduction
【2016.4.11 9:30am, N514】

【打印】【关闭】

 2016-4-7 

  Colloquia & Seminars 

  Speaker

崔文泉 教授(中国科技大学统计与金融学院)

  Title

A RKHS-based semiparametric approach to nonlinear dimension reduction

  Time

2016.04.11(周一)上午9:30-10:30

  Venue

N514

  Abstract

This paper proposes a nonlinear dimension reduction method - the generalized semiparametric kernel sliced inverse regression (GSKSIR for short), developed based on the theory of reproducing kernel Hilbert Space (RKHS) and the semiparametric method.

This method extends the classical semiparametric method into more generalized semiparametric domain, and is capable of handling infinite dimensional interested parameter spaces. Under this method, both spaces of nuisance parameters and parameters of interests can be infinite dimensional, the corresponding generalized nuisance tangent space orthogonal complement is derived, estimation equation for the purpose of dimension reduction is constructed, and optimization of the target function can be achieved based on RKHS theory and regularization method, which leads to a nonlinear estimated sufficient reduced dimension subspace with efficient properties. Furthermore, this new method does not impose the linearity design conditions (LDC) under methods such as the sliced inverse regression (SIR) and the kernel SIR, and so on, and thus, is more general and can be more widely applied.

Finally, a Monte Carlo simulation is conducted, the results demonstrate the excellent finite sample properties of this new method.

  Affiliation

 

欢迎访问国家数学与交叉科学中心 
地址:北京海淀区中关村东路55号 邮编:100190 电话: 86-10-62613242 Fax: 86-10-62616840 邮箱: ncmis@amss.ac.cn