网站地图 | 联系我们 | English | 意见反馈 | 主任信箱
 
首页 中心概况 新闻动态 科研进展 交流合作 人才培养 研究队伍 人才招聘 政策规章 数学交叉科学传播
学术报告
现在位置:首页 > 学术报告

Fullerenes, Toric Topology, four Colour Problem and Hyperbolic Manifolds
【2017.4.19 10:00am, N913】

【打印】【关闭】

 2017-04-14 

  Colloquia & Seminars 

  Speaker

Prof. Victor M. Buchstaber, 俄国科学院院士,Steklov Istitute of Mathematics and Lomonosov Moscow State University 

  Title

Fullerenes, Toric Topology, four Colour Problem and Hyperbolic Manifolds 

  Time

2017.4.19 10:00-11:00

  Venue

N913

  Abstract

In this talk we discuss deep and fruitful inter-relations between different areas of mathematics and applications of these relations.

By a fullerene we mean a combinatorial simple 3-polytope with only pentagonal and hexagonal facets. This is a mathematical model for spherical shaped molecule of carbon with atoms linked into pentagonal and hexagonal rings (1996 Nobel Prize in chemistry to Robert Curl, Harold Kroto and Richard Smalley). The Euler formula implies that any fullerene has p_5=12 pentagons. It can be proved that the number p_6 of hexagons can be arbitrary except for one. The dodecahedron is the only fullerene with p_6=0, while for large p_6 the number of fullerenes grows as p_6^9. We show that there exists a finite set of operations sufficient to construct arbitrary fullerene from the dodecahedron (V.M.Buchstaber, N.Yu.Erochovets, Structural Chemistry, 2016, 1–10).

  Affiliation

 

欢迎访问国家数学与交叉科学中心 
地址:北京海淀区中关村东路55号 邮编:100190 电话: 86-10-62613242 Fax: 86-10-62616840 邮箱: ncmis@amss.ac.cn