2025.04.25 Colloquia Seminars
Speaker |
滕尚华教授,美国南加州大学 |
Title |
Understanding and Characterizing Regularization |
Time |
2025.05.06 9:30-11:00 |
Venue |
N204 |
Abstract |
The quintessential learning algorithm of empirical risk minimization (ERM) is known to fail in various settings for which uniform convergence does not characterize learning. Relatedly, the practice of machine learning is rife with considerably richer algorithmic techniques, perhaps the most notable of which is regularization. Nevertheless, no such technique or principle has broken away from the pack to characterize optimal learning in these more general settings. The purpose of this work is to precisely characterize the role of regularization in perhaps the simplest setting for which ERM fails: multiclass learning with arbitrary label sets. Using one-inclusion graphs (OIGs), we exhibit optimal learning algorithms that dovetail with tried-and-true algorithmic principles: Occam's Razor as embodied by structural risk minimization (SRM), the principle of maximum entropy, and Bayesian inference. We also extract from OIGs a combinatorial sequence we term the Hall complexity, which is the first to characterize a problem's transductive error rate exactly. Lastly, we introduce a generalization of OIGs and the transductive learning setting to the agnostic case, where we show that optimal orientations of Hamming graphs - judged using nodes' outdegrees minus a system of node-dependent credits - characterize optimal learners exactly. We demonstrate that an agnostic version of the Hall complexity again characterizes error rates exactly, and exhibit an optimal learner using maximum entropy programs.
Joint work (COLT 2024) with Julian Asilis, Siddartha Devic, Shaddin Dughmi, and Vatsal Sharan. |
Affiliation |
Shang-Hua Teng is a USC University Professor of Computer Science and Mathematics. He is a fellow of SIAM, ACM, and Alfred P. Sloan Foundation, and has twice won the Gödel Prize, first in 2008, for developing smoothed analysis, and then in 2015, for designing the breakthrough scalable Laplacian solver. Citing him as, “one of the most original theoretical computer scientists in the world”, the Simons Foundation named him a 2014 Simons Investigator to pursue long-term curiosity-driven fundamental research. He also received the 2009 Fulkerson Prize, 2023 Science & Technology Award for Overseas Chinese from the China Computer Federation, 2022 ACM SIGecom Test of Time Award (for settling the complexity of computing a Nash equilibrium), 2021 ACM STOC Test of Time Award (for smoothed analysis), 2020 Phi Kappa Phi Faculty Recognition Award (2020) for his book Scalable Algorithms for Data and Network Analysis, 2011 ACM STOC Best Paper Award (for improving maximum-flow minimum-cut algorithms). In addition, he and collaborators developed the first optimal well-shaped Delaunay mesh generation algorithms for arbitrary three-dimensional domains, settled the Rousseeuw-Hubert regression-depth conjecture in robust statistics, and resolved two long-standing complexity-theoretical questions regarding the Sprague-Grundy theorem in combinatorial game theory. For his industry work with Xerox, NASA, Intel, IBM, Akamai, and Microsoft, he received fifteen patents in areas including compiler optimization, Internet technology, and social networks. | |